Fe-Cr-Ni heat resistant alloys with aluminum and silicon addition, alone and in combination, were melted using an intermediate frequency induction furnace with a non-oxidation method. By the oxidation weight gain meth...Fe-Cr-Ni heat resistant alloys with aluminum and silicon addition, alone and in combination, were melted using an intermediate frequency induction furnace with a non-oxidation method. By the oxidation weight gain method, the oxidation resistances of the test alloys were determined at 1,200 ℃ for 500 hours. According to the oxidation weight gains, the oxidation kinetic curves were plotted and the functions were regressed by the least squares method. The results show that the oxidation kinetic curves follow the power function of y = ax^b (a〉0, 0〈b〈1). The effects of scale compositions on oxidation resistance were studied further by analyses using X-ray diffraction (XRD) and scanning electron microscope (SEM). It is found that the composite scale compounds of Cr203, a-Al2O3, SiO2 and FeCr2O4, with compact structure and tiny grains, shows complete oxidation resistance at 1,200℃. When the composite scale lacks a-Al2O3 or SiO2, it becomes weak in oxidation resistance with a loose structure. By the criterion of standard Gibbs formation free energy, the model of the nucleation and growth of the composite scale is established. The forming of the composite scale is the result of the competition of being oxidized and reduced between aluminum, silicon and the matrix metal elements of iron, chromium and nickel. The protection of the composite scale is analyzed essentially by electrical conductivity and strength properties.展开更多
Al2O3 particle-reinforced ZL109 composite was prepared by in situ reaction between CuO and Al2O3 . The microstructure was observed by means of OM, SEM and TEM. The Al2O3 particles in sub-micron sizes distribute unifo...Al2O3 particle-reinforced ZL109 composite was prepared by in situ reaction between CuO and Al2O3 . The microstructure was observed by means of OM, SEM and TEM. The Al2O3 particles in sub-micron sizes distribute uniformly in the matrix, and the Cu displaced from the in situ reaction forms net-like alloy phases with other alloy elements. The hardness and the tensile strength of the composites at room temperature have a slight increase as compared to that of the matrix. However, the tensile strength at 350℃ has reached 90.23 MPa, or 16.92 MPa higher than that of the matrix. The mechanism of the reaction in the CuO/AI system was studied by using of differential scanning calorimetry(DSC) and thermodynamic calculation. The reaction between CuO and Al involves two steps. First, CuO reacts with Al to form Cu20 and Al2O3 at the melting temperature of the matrix alloy, and second, Cu20 reacts with Al to form Cu and Al2O3 at a higher temperature. At ZL109 casting temperature of 750- 780 ℃, the second step can also take place because of the effect of exothermic reaction of the first step.展开更多
A Si-containing K273 superalloy was made using intermediate frequency induction furnace in the study. In the testing of oxidation resistance, the oxidation process of the alloy specimens during the testing at 900℃ fo...A Si-containing K273 superalloy was made using intermediate frequency induction furnace in the study. In the testing of oxidation resistance, the oxidation process of the alloy specimens during the testing at 900℃ for 500 h was examined by oxidation weight gain method. The morphology and composition of the oxide scales were determined using scanning electron microscope (SEM) and X-ray diffraction (XRD), respectively. The effects of the transferring of ions and electrons on the oxidation resistance were further analyzed microscopically by semiconductor oxide models. The results show that the composite oxide scales consist of Cr203, SiO2 and spinel- type oxide MCr204, with flat and compact structure, and fine grains in uniform distribution. All of these endow the superalloy K273 with strong oxidation resistance. The reason for the powerful oxidation resistance of the composite scale is that the formation process of P+N type semiconductor oxide enables to consume most of the surplus negative and positive ions in the oxide scales, which makes the number of the mobile ions and electrons dropped enormously, and the transfer rate of them falls heavily. So the oxidation rate of the metal phase in the alloy matrix is reduced significantly.展开更多
Al matrix composites with a high volume fraction of reinforcements were fabricated with a compact of Al-Ti-B4C powder mixtures by quick spontaneous infiltration(QSI) process in an aluminum melt. Given the exothermal n...Al matrix composites with a high volume fraction of reinforcements were fabricated with a compact of Al-Ti-B4C powder mixtures by quick spontaneous infiltration(QSI) process in an aluminum melt. Given the exothermal nature of the reaction between CuO and Al, a certain amount of CuO addition to the Al-Ti-B4C system dramatically increases the adiabatic temperature and thereby enables the complete combustion reaction in an aluminum melt(about 1,173 K). After the QSI process, the compact fabricated with CuO retains its original shape and the obtained composite exhibits sound microstructure containing reaction products of TiB2, Al3BC and B4C. The formation of such reinforcements when adding CuO contributes to enhancing the properties of the composites that show far superior hardness and elastic modulus of 3.03 GPa and 158.9 GPa, respectively, with lower coefficient of thermal expansion(9.44 ppm?K-1) compared to those with no CuO addition.展开更多
基金supported financially by Komatsu of Japan,grant number31370011370804,in Shandong University,China.
文摘Fe-Cr-Ni heat resistant alloys with aluminum and silicon addition, alone and in combination, were melted using an intermediate frequency induction furnace with a non-oxidation method. By the oxidation weight gain method, the oxidation resistances of the test alloys were determined at 1,200 ℃ for 500 hours. According to the oxidation weight gains, the oxidation kinetic curves were plotted and the functions were regressed by the least squares method. The results show that the oxidation kinetic curves follow the power function of y = ax^b (a〉0, 0〈b〈1). The effects of scale compositions on oxidation resistance were studied further by analyses using X-ray diffraction (XRD) and scanning electron microscope (SEM). It is found that the composite scale compounds of Cr203, a-Al2O3, SiO2 and FeCr2O4, with compact structure and tiny grains, shows complete oxidation resistance at 1,200℃. When the composite scale lacks a-Al2O3 or SiO2, it becomes weak in oxidation resistance with a loose structure. By the criterion of standard Gibbs formation free energy, the model of the nucleation and growth of the composite scale is established. The forming of the composite scale is the result of the competition of being oxidized and reduced between aluminum, silicon and the matrix metal elements of iron, chromium and nickel. The protection of the composite scale is analyzed essentially by electrical conductivity and strength properties.
文摘Al2O3 particle-reinforced ZL109 composite was prepared by in situ reaction between CuO and Al2O3 . The microstructure was observed by means of OM, SEM and TEM. The Al2O3 particles in sub-micron sizes distribute uniformly in the matrix, and the Cu displaced from the in situ reaction forms net-like alloy phases with other alloy elements. The hardness and the tensile strength of the composites at room temperature have a slight increase as compared to that of the matrix. However, the tensile strength at 350℃ has reached 90.23 MPa, or 16.92 MPa higher than that of the matrix. The mechanism of the reaction in the CuO/AI system was studied by using of differential scanning calorimetry(DSC) and thermodynamic calculation. The reaction between CuO and Al involves two steps. First, CuO reacts with Al to form Cu20 and Al2O3 at the melting temperature of the matrix alloy, and second, Cu20 reacts with Al to form Cu and Al2O3 at a higher temperature. At ZL109 casting temperature of 750- 780 ℃, the second step can also take place because of the effect of exothermic reaction of the first step.
文摘A Si-containing K273 superalloy was made using intermediate frequency induction furnace in the study. In the testing of oxidation resistance, the oxidation process of the alloy specimens during the testing at 900℃ for 500 h was examined by oxidation weight gain method. The morphology and composition of the oxide scales were determined using scanning electron microscope (SEM) and X-ray diffraction (XRD), respectively. The effects of the transferring of ions and electrons on the oxidation resistance were further analyzed microscopically by semiconductor oxide models. The results show that the composite oxide scales consist of Cr203, SiO2 and spinel- type oxide MCr204, with flat and compact structure, and fine grains in uniform distribution. All of these endow the superalloy K273 with strong oxidation resistance. The reason for the powerful oxidation resistance of the composite scale is that the formation process of P+N type semiconductor oxide enables to consume most of the surplus negative and positive ions in the oxide scales, which makes the number of the mobile ions and electrons dropped enormously, and the transfer rate of them falls heavily. So the oxidation rate of the metal phase in the alloy matrix is reduced significantly.
基金supported by a grant from the Fundamental R&D Program for Core Technology of Materialsfunded by the Ministry of Knowledge Economy,Republic of Korea(No.10037308)
文摘Al matrix composites with a high volume fraction of reinforcements were fabricated with a compact of Al-Ti-B4C powder mixtures by quick spontaneous infiltration(QSI) process in an aluminum melt. Given the exothermal nature of the reaction between CuO and Al, a certain amount of CuO addition to the Al-Ti-B4C system dramatically increases the adiabatic temperature and thereby enables the complete combustion reaction in an aluminum melt(about 1,173 K). After the QSI process, the compact fabricated with CuO retains its original shape and the obtained composite exhibits sound microstructure containing reaction products of TiB2, Al3BC and B4C. The formation of such reinforcements when adding CuO contributes to enhancing the properties of the composites that show far superior hardness and elastic modulus of 3.03 GPa and 158.9 GPa, respectively, with lower coefficient of thermal expansion(9.44 ppm?K-1) compared to those with no CuO addition.