期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Responses of Soil Bacterial Diversity to Fertilization are Driven by Local Environmental Context Across China 被引量:5
1
作者 youzhi feng Manuel Delgado-Baquerizo +11 位作者 Yongguan Zhu Xiaozeng Han Xiaori Han Xiuli Xin Wei Li Zhibing Guo Tinghui Dang Chenhua Li Bo Zhu Zejiang Cai Daming Li Jiabao Zhang 《Engineering》 SCIE EI CAS 2022年第5期164-170,共7页
Soil microbial diversity is extremely vulnerable to fertilization,which is one of the main anthropogenic activities associated with global changes.Yet we know little about how and why soil microbial diversity responds... Soil microbial diversity is extremely vulnerable to fertilization,which is one of the main anthropogenic activities associated with global changes.Yet we know little about how and why soil microbial diversity responds to fertilization across contrasting local ecological contexts.This knowledge is fundamental for predicting changes in soil microbial diversity in response to ongoing global changes.We analyzed soils from ten 20-year field fertilization(organic and/or inorganic)experiments across China and found that the national-scale responses of soil bacterial diversity to fertilization are dependent on ecological context.In acidic soils from regions with high precipitation and soil fertility,inorganic fertilization can result in further acidification,resulting in negative impacts on soil bacterial diversity.In comparison,organic fer-tilization causes a smaller disturbance to soil bacterial diversity.Despite the overall role of environmental contexts in driving soil microbial diversity,a small group of bacterial taxa were found to respond to fer-tilization in a consistent way across contrasting regions throughout China.Taxa such as Nitrosospira and Nitrososphaera,which benefit from nitrogen fertilizer addition,as well as Chitinophagaceae,Bacilli,and phototrophic bacteria,which respond positively to organic fertilization,could be used as bioindicators for soil fertility in response to fertilization at the national scale.Overall,our work provides new insights into the importance of local environmental context in determining the responses of soil microbial diver-sity to fertilization,and identifies regions with acidic soils wherein soil microbial diversity is more vul-nerable to fertilization at the national scale. 展开更多
关键词 Nutrient addition Anthropogenic activity BIODIVERSITY Soil pH
在线阅读 下载PDF
Chronosequencing methanogenic archaea in ancient Longji rice Terraces in China 被引量:4
2
作者 youzhi feng Jan Dolfing +4 位作者 Zhiying Guo Jianwei Zhang Ganlin Zhang Shijie Li Xiangui Lin 《Science Bulletin》 SCIE EI CAS CSCD 2017年第12期879-887,共9页
Chronosequences of ancient rice terraces serve as an invaluable archive for reconstructions of historical human-environment interactions. Presently, however, these reconstructions are based on traditional soil physico... Chronosequences of ancient rice terraces serve as an invaluable archive for reconstructions of historical human-environment interactions. Presently, however, these reconstructions are based on traditional soil physico-chemical properties. The microorganisms in palaeosols have been unexplored. We hypothesized that microbial information can be used as an additional proxy to complement and consolidate archaeological interpretations. To test this hypothesis, the palaeoenvironmental methanogenic archaeal DNA in Longji Terraces, one of the famous ancient terraces in China, dating back to the late Yuan Dynasty(CE1361–1406), was chronosequenced by high-throughput sequencing. It was found that the methanogenic archaeal abundance, diversity and community composition were closely associated with the 630 years of rice cultivation and in line with changes in multi-proxy data. Particularly, the centennial-and decadalscale influences of known historical events, including social turbulences(The Taiping Rebellion, CE1850–1865), palaeoclimate changes(the Little Ice Age) and recorded natural disasters(earthquakes and inundation), on ancient agricultural society were clearly echoed in the microbial archives as variations in alpha and beta diversity. This striking correlation suggests that the microorganisms archived in palaeosols can be quantitatively and qualitatively analyzed to provide an additional proxy, and palaeo-microbial information could be routinely incorporated in the toolkit for archaeological interpretation. 展开更多
关键词 Ancient paddy soilAnthropogenic activitiesPalaeosol microorganismsLongji Terraces
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部