RING finger E3 ligases play an important role in regulating plant growth and development by mediating substrate degradation.In this study,we identified TaGW2L,encoding a Grain width and weight2(GW2)-like RING finger E...RING finger E3 ligases play an important role in regulating plant growth and development by mediating substrate degradation.In this study,we identified TaGW2L,encoding a Grain width and weight2(GW2)-like RING finger E3 ligase,as a novel positive regulator of heading date in wheat(Triticum aestivum L.).TaGW2L exhibited high amino acid sequence similarities with TaGW2 homoeologs,particularly in the conserved RING finger domain.Expression analysis indicated that TaGW2L was constitutively expressed in various wheat tissues.TaGW2L showed transactivation activity in yeast and could interact with the ubiquitin-conjugating enzymes E2_(s).An in vitro ubiquitination assay verified that TaGW2L possessed a similar E3 ligase activity to TaGW2.Overexpression of the TaGW2L-7A homoeolog in wheat led to a significantly earlier heading date under both natural conditions and long-day conditions.Transcriptome analysis revealed that multiple known genes positively regulating wheat heading were significantly upregulated in the TaGW2L-7A-overexpression plants compared with the wild-type control.Together,our findings shed light on the role of TaGW2L in wheat heading date and provide potential applications of TaGW2L for the adaptation improvement of crops.展开更多
Nonstructural carbohydrates (NSC) and nitrogen metabolism strongly influence growth and development in plants. The biosynthesis of cellulose and lignin (structural carbohydrates, SC) depends largely on the supply ...Nonstructural carbohydrates (NSC) and nitrogen metabolism strongly influence growth and development in plants. The biosynthesis of cellulose and lignin (structural carbohydrates, SC) depends largely on the supply of NSC. We desire to examine which hypothesis, carbon limitation or growth limitation, best fits the alpine plant response between NSC, SC, carbon (C), nitrogen (N) and altitude. We compared the foliar concentrations of carbohydrates, C and N between the leaves of Picea crassifolia (lower-elevation tree-line species) and Sabina przewalskii (high-elevation tree-line species) in their response to changing elevation. Our site was located in the mid-northern area of Qilian Mountains, China. We found that foliar soluble sugar (SG) concentrations were significantly higher in P. crassifolia than in S. przewalskii at the 2,700-3,400 m level. Foliar NSC levels in R crassifolia increased at the 2,700-3,100 m level, indicating that growth was limited gradually resulting in a surplus of NSC (to conform to GLH), subsequently decreasing at the 3,100-3,400 m level, the assimilation declined leading to C deficit (to conform to CLH). SC (SC metabolism disorders at 3,100-3,400 m), C, N and starch were significantly lower in R crassifolia than in S. przewalskii. Conversely, foliar SG concentration shows a fall-rise trend with increasing elevation for S. przewalskii. SC concentration in S. przewalskii leaves decreased with an increase of elevation and has a significantly positive correlation to N concentration marking the assimilation of plants. Therefore, the high-elevation tree-line species (S. przewalskii) utilize or store more foliar SG leading to a decrease of SG concentration for survival and growth/regrowth in an adverse environment, higher total C, N, SC, starch contents and lower NSC level. Also, their change trends along the elevational gradient in leaves orS. przewalskii indicate better assimilation strategies for SG use under environmental stress compared to P. crassifolia. This indicates that foliar C metabolism along the elevation follows the principle of the growth-limitation hypothesis (GLH) or carbon limitation hypothesis (CLH), which depends on the acclimation of different alpine life-forms to the environment.展开更多
Seasonal variation of foliar δ13C values as well as proline, silicon, MDA and relative water content in Sabina przewalskii Kom. and S. chinensis (Lin.) Ant. were measured. The results show that foliar δ13C values ...Seasonal variation of foliar δ13C values as well as proline, silicon, MDA and relative water content in Sabina przewalskii Kom. and S. chinensis (Lin.) Ant. were measured. The results show that foliar δ13C values were significantly different at different seasons: lower in winter but higher in summer. δ13C values were positively correlated with air temperature and soil temperature. This demonstrates that foliar δ13C of Sabina is a successful empirical indictor of temperature. Furthermore, foliar δ13C values were positively related to proline and silicon content, and negatively related to relative water content and MDA content. Compared with S. chinensis, S. przewalskii has higher δ13C values, proline and silicon content as well as lower MDA and relative water content. All these results provided strong evidence that it is feasible for δ13C to be regarded as another index to evaluate freezing tolerance of Sabina.展开更多
Drought is a major environmental stress limiting global wheat(Triticum aestivum)production.Exploring drought tolerance genes is important for improving drought adaptation in this crop.Here,we cloned and characterized ...Drought is a major environmental stress limiting global wheat(Triticum aestivum)production.Exploring drought tolerance genes is important for improving drought adaptation in this crop.Here,we cloned and characterized TaTIP41,a novel drought tolerance gene in wheat.TaTIP41 is a putative conserved component of target of rapamycin(TOR)signaling,and the Ta TIP41 homoeologs were expressed in response to drought stress and abscisic acid(ABA).The overexpression of Ta TIP41 enhanced drought tolerance and the ABA response,including ABA-induced stomatal closure,while its downregulation using RNA interference(RNAi)had the opposite effect.Furthermore,Ta TIP41 physically interacted with TaTAP46,another conserved component of TOR signaling.Like TaTIP41,TaTAP46 positively regulated drought tolerance.Furthermore,TaTIP41 and TaTAP46 interacted with type-2A protein phosphatase(PP2A)catalytic subunits,such as TaPP2A-2,and inhibited their enzymatic activities.Silencing TaPP2A-2 improved drought tolerance in wheat.Together,our findings provide new insights into the roles of TaTIP41 and TaTAP46 in the drought tolerance and ABA response in wheat,and their potential application in improving wheat environmental adaptability.展开更多
基金supported by the National Natural Science Foundation of China (32172045, 31671687)the National Key Research and Development Program of China (2016YFD0100302)the Agricultural Science and Technology Innovation Program of the CAAS
文摘RING finger E3 ligases play an important role in regulating plant growth and development by mediating substrate degradation.In this study,we identified TaGW2L,encoding a Grain width and weight2(GW2)-like RING finger E3 ligase,as a novel positive regulator of heading date in wheat(Triticum aestivum L.).TaGW2L exhibited high amino acid sequence similarities with TaGW2 homoeologs,particularly in the conserved RING finger domain.Expression analysis indicated that TaGW2L was constitutively expressed in various wheat tissues.TaGW2L showed transactivation activity in yeast and could interact with the ubiquitin-conjugating enzymes E2_(s).An in vitro ubiquitination assay verified that TaGW2L possessed a similar E3 ligase activity to TaGW2.Overexpression of the TaGW2L-7A homoeolog in wheat led to a significantly earlier heading date under both natural conditions and long-day conditions.Transcriptome analysis revealed that multiple known genes positively regulating wheat heading were significantly upregulated in the TaGW2L-7A-overexpression plants compared with the wild-type control.Together,our findings shed light on the role of TaGW2L in wheat heading date and provide potential applications of TaGW2L for the adaptation improvement of crops.
基金supported by The National Science Foundation of China (Nos. 31160086, 31200299)
文摘Nonstructural carbohydrates (NSC) and nitrogen metabolism strongly influence growth and development in plants. The biosynthesis of cellulose and lignin (structural carbohydrates, SC) depends largely on the supply of NSC. We desire to examine which hypothesis, carbon limitation or growth limitation, best fits the alpine plant response between NSC, SC, carbon (C), nitrogen (N) and altitude. We compared the foliar concentrations of carbohydrates, C and N between the leaves of Picea crassifolia (lower-elevation tree-line species) and Sabina przewalskii (high-elevation tree-line species) in their response to changing elevation. Our site was located in the mid-northern area of Qilian Mountains, China. We found that foliar soluble sugar (SG) concentrations were significantly higher in P. crassifolia than in S. przewalskii at the 2,700-3,400 m level. Foliar NSC levels in R crassifolia increased at the 2,700-3,100 m level, indicating that growth was limited gradually resulting in a surplus of NSC (to conform to GLH), subsequently decreasing at the 3,100-3,400 m level, the assimilation declined leading to C deficit (to conform to CLH). SC (SC metabolism disorders at 3,100-3,400 m), C, N and starch were significantly lower in R crassifolia than in S. przewalskii. Conversely, foliar SG concentration shows a fall-rise trend with increasing elevation for S. przewalskii. SC concentration in S. przewalskii leaves decreased with an increase of elevation and has a significantly positive correlation to N concentration marking the assimilation of plants. Therefore, the high-elevation tree-line species (S. przewalskii) utilize or store more foliar SG leading to a decrease of SG concentration for survival and growth/regrowth in an adverse environment, higher total C, N, SC, starch contents and lower NSC level. Also, their change trends along the elevational gradient in leaves orS. przewalskii indicate better assimilation strategies for SG use under environmental stress compared to P. crassifolia. This indicates that foliar C metabolism along the elevation follows the principle of the growth-limitation hypothesis (GLH) or carbon limitation hypothesis (CLH), which depends on the acclimation of different alpine life-forms to the environment.
基金supported by the National Public Benefit Research Foundation of China (No. 200806036)the National Natural Science Foundation of China (No.30770342 and No.30670319)China Postdoctoral Science Foundation (No.20090460743)
文摘Seasonal variation of foliar δ13C values as well as proline, silicon, MDA and relative water content in Sabina przewalskii Kom. and S. chinensis (Lin.) Ant. were measured. The results show that foliar δ13C values were significantly different at different seasons: lower in winter but higher in summer. δ13C values were positively correlated with air temperature and soil temperature. This demonstrates that foliar δ13C of Sabina is a successful empirical indictor of temperature. Furthermore, foliar δ13C values were positively related to proline and silicon content, and negatively related to relative water content and MDA content. Compared with S. chinensis, S. przewalskii has higher δ13C values, proline and silicon content as well as lower MDA and relative water content. All these results provided strong evidence that it is feasible for δ13C to be regarded as another index to evaluate freezing tolerance of Sabina.
基金financialy supported by the National Key Research and Development Program of China(2022YFF1003402)the National Natural Science Foundation of China(32172045)+1 种基金the National Animal and Plant Transgenic Project(2016ZX08009001)the Natural Science Foundation of Ningxia Province(2022AAC02056)。
文摘Drought is a major environmental stress limiting global wheat(Triticum aestivum)production.Exploring drought tolerance genes is important for improving drought adaptation in this crop.Here,we cloned and characterized TaTIP41,a novel drought tolerance gene in wheat.TaTIP41 is a putative conserved component of target of rapamycin(TOR)signaling,and the Ta TIP41 homoeologs were expressed in response to drought stress and abscisic acid(ABA).The overexpression of Ta TIP41 enhanced drought tolerance and the ABA response,including ABA-induced stomatal closure,while its downregulation using RNA interference(RNAi)had the opposite effect.Furthermore,Ta TIP41 physically interacted with TaTAP46,another conserved component of TOR signaling.Like TaTIP41,TaTAP46 positively regulated drought tolerance.Furthermore,TaTIP41 and TaTAP46 interacted with type-2A protein phosphatase(PP2A)catalytic subunits,such as TaPP2A-2,and inhibited their enzymatic activities.Silencing TaPP2A-2 improved drought tolerance in wheat.Together,our findings provide new insights into the roles of TaTIP41 and TaTAP46 in the drought tolerance and ABA response in wheat,and their potential application in improving wheat environmental adaptability.