Mesozoic-Palaeozoic marine carbonate rocks are crucial hydrocarbon reservoirs in the Central Uplift area of the South Yellow Sea Basin(SYSB).Due to the scarcity of boreholes and the significant heterogeneity of carbon...Mesozoic-Palaeozoic marine carbonate rocks are crucial hydrocarbon reservoirs in the Central Uplift area of the South Yellow Sea Basin(SYSB).Due to the scarcity of boreholes and the significant heterogeneity of carbonate reservoirs,the distribution of porous carbonate reservoirs and their related key controlling factors remain unclear.In this study,factors affecting the distribution of porous Carboniferous-Early Permian carbonate reservoirs in the SYSB were investigated through seismic inversion and isotope analysis.The log-seismic characteristics of porous carbonate reservoirs,sensitive lithology parameters,and physical property parameters were extracted and analyzed.The pre-stack simultaneous inversion technique was applied to predict the lithology and physical properties of porous carbonate reservoirs.Moreover,the sedimentary of carbonate was analyzed using isotopes of carbon,oxygen,and strontium.The results show that porous carbonate reservoirs are mainly developed in the open platform sediments with porosities of 3%-5%and are mainly distributed in the paleo-highland(Huanglong Formation and Chuanshan Formation)and the slope of paleo-highland(Hezhou Formation).The porous carbonate reservoirs of the Qixia Formation are only locally developed.In addition,the negativeδ13C excursions indicate a warm and humid tropical climate with three sea-level fluctuations in the study area from the Carboniferous to Early Permian.The favorable conditions for developing porous carbonate rocks include the sedimentary environment and diagenetic process.The primary pore tends to form in high-energy environments of the paleo-highland,and the secondary pore is increased by dissolution during the syngenetic or quasi-syngenetic period.According to the hydrocarbon potential analysis,the Late Ordovician Wufeng Formation and Lower Silurian Gaojiabian Formation are the source rocks in the high-maturity-over-maturity stage,the Carboniferous-Lower Permian carbonate is the good reservoirs,and the Late Permian Longtan-Dalong Formation is the stable seal,ensuring a huge hydrocarbon accumulation potential in SYSB.The methods proposed in this study can be applied to other carbonate-dominated strata worldwide.展开更多
The South Yellow Sea Basin is a large sedimentary basin superimposed by the Mesozoic-Paleozoic marine sedimentary basin and the Mesozoic-Cenozoic terrestrial sedimentary basin, where no oil and gas fields have been di...The South Yellow Sea Basin is a large sedimentary basin superimposed by the Mesozoic-Paleozoic marine sedimentary basin and the Mesozoic-Cenozoic terrestrial sedimentary basin, where no oil and gas fields have been discovered after exploration for 58 years. After the failure of oil and gas exploration in terrestrial basins, the exploration target of the South Yellow Sea Basin turned to the marine Mesozoic- Paleozoic strata. After more than ten years' investigation and research, a lot of achievements have been obtained. The latest exploration obtained effective seismic reflection data of deep marine facies by the application of seismic exploration technology characterized by high coverage, abundant low-frequency components and strong energy source for the deep South Yellow Sea Basin. In addition, some wells drilled the Middle-Upper Paleozoic strata, with obvious oil and gas shows discovered in some horizons. The recent petroleum geological research on the South Yellow Sea Basin shows that the structure zoning of the marine residual basin has been redetermined, the basin structure has been defined, and 3 seismic reflection marker layers are traceable and correlatable in the residual thick Middle-Paleozoic strata below the continental Meso-Cenozoic strata in the South Yellow Sea Basin. Based on these, the seismic sequence of the marine sedimentary strata was established. According to the avaliable oil and gas exploration and research, the marine Mesozoic-Paleozoic oil and gas prospects of the South Yellow Sea were predicted as follows.(1) The South Yellow Sea Basin has the same sedimentary formation and evolution history during the sedimentary period of the Middle-Paleozoic marine basin with the Sichuan Basin.(2) There are 3 regional high-quality source rocks.(3) The carbonate and clastic reservoirs are developed in the Mesozoic- Paleozoic strata.(4) The three source-reservoir-cap assemblages are relatively intact.(5) The Laoshan Uplift is a prospect area for the Lower Paleozoic oil and gas, and the Wunansha Uplift is one for the marine Upper Paleozoic oil and gas.(6) The Gaoshi stable zone in the Laoshan Uplift is a favorable zone.(7) The marine Mesozoic-Paleozoic strata in the South Yellow Sea Basin has the geological conditions required to form large oil and gas fields, with remarkable oil and gas resources prospect. An urgent problem to be addressed now within the South Yellow Sea Basin is to drill parametric wells for the Lower Paleozoic strata as the target, to establish the complete stratigraphic sequence since the Paleozoic period, to obtain resource evaluation parameters, and to realize the strategic discovery and achieve breakthrough in oil and gas exploration understanding.展开更多
Based on the seismic data gathered in past years and the correlation between the sea and land areas of the Lower Yangtze Platform,the structural characteristics of the South Yellow Sea Basin since the Indosinian tecto...Based on the seismic data gathered in past years and the correlation between the sea and land areas of the Lower Yangtze Platform,the structural characteristics of the South Yellow Sea Basin since the Indosinian tectonic movement is studied in this paper.Three stages of structural deformation can be distinguished in the South Yellow Sea Basin since the Indosinian.The first stage,Late Indosinian to Early Yanshanian, was dominated by foreland deformation including both the uplifting and subsidence stages under an intensively compressional environment.The second stage,which is called the Huangqiao Event in the middle Yanshanian,was a change for stress fields from compression to extension.While in the third stage (the Sanduo Event)in the Late Himalayan,the basin developed a depression in the Neogene-Quatemary after rifting in the Late Cretaceous-Paleogene.The long-time evolution controlled 3 basin formation stages from a foreland basin,then a fault basin to a final depression basin.In conclusion,since the Indosinian,the South Yellow Sea Basin has experienced compressional fold and thrust,collisional orogen,compressional and tensional pulsation,strike-slip,extensional fault block and inversion structures,compression and convergence.The NE,NEE,nearly EW and NW trending structures developed in the basin.From west to east,the structural trend changed from NEE to near EW to NW.While from north to south,they changed from NEE to near EW with a strong-weak-strong zoning sequence.Vertically,the marine and terrestrial facies basins show a "seesaw"pattern with fold and thrust in the early stages,which is strong in the north and weak in the south and an extensional fault in later stages,which is strong in the north and weak in the south.In the marine facies'basin,thrust deformation is more prevailing in the upper structural layer than that in the lower layer.The tectonic mechanism in the South Yellow Sea Basin is mainly affected by the collision between the Yangtze and North China Block,while the stress environment of large-scale strike- slip faults was owing to subduction of the Paleo-Pacific plate.The southern part of the Laoshan uplift is a weak deformation zone as well as a stress release zone,and the Meso-Paleozoic had been weakly reformed in later stages.The southern part of the Laoshan uplift is believed,therefore,to be a promising area for oil and gas exploration.展开更多
1.Objectives The study of the paleo-reservoir is of great significance for oil and gas exploration.Firstly,the existence of paleoreservoirs can reflect there has been hydrocarbon accumulation process in this area,wher...1.Objectives The study of the paleo-reservoir is of great significance for oil and gas exploration.Firstly,the existence of paleoreservoirs can reflect there has been hydrocarbon accumulation process in this area,where there once was the advantageous condition with source-reservoir-cap combination;secondly,it can indicate that this area has certain resource potential.The purpose of this research is: through the study of the paleo-reservoir of CSDP-2 well in the Laoshan uplift of the South Yellow Sea Basin,which is a scientific investigation well,it can provide geological basis for marine oil and gas exploration of the Mesozoic and Paleozoic in the Laoshan uplift of the South Yellow Sea Basin,and at the same time can provide important information for future exploration target selection.展开更多
1.Objective Fluid inclusions are the only way to obtain the volatile components in the process of hydrocarbon accumulation. The Marine Paleozoic strata in the South Yellow Sea Basin are of great thickness and widely d...1.Objective Fluid inclusions are the only way to obtain the volatile components in the process of hydrocarbon accumulation. The Marine Paleozoic strata in the South Yellow Sea Basin are of great thickness and widely distributed. The Lower Paleozoic source rocks, reservoirs and caprocks are developed and have generally good hydrocarbon geological conditions.展开更多
The Sea of Japan is located in the southeast margin of Eurasia, in the triangle area of the western Pacific Ocean. Due to the interaction of the Pacific plate, Eurasian plate and Philippine plate, its tectonic environ...The Sea of Japan is located in the southeast margin of Eurasia, in the triangle area of the western Pacific Ocean. Due to the interaction of the Pacific plate, Eurasian plate and Philippine plate, its tectonic environment is complex, forming a typical trench-arc-basin system. At present, 148 oil and gas fields have been discovered in Japan, with an oil and gas resource of 255.78×10^(6) t, showing a good prospect for oil and gas exploration. Based on the previous research and the recently collected geological and geophysical data, the characteristics of tectonic-sedimentary evolution and geothermal field in the basins around the Sea of Japan are analyzed. The results show that the tectonic evolution of the basin is mainly controlled by plate subduction and back-arc oceanic crust expansion, and it mainly undergone four tectonic-sedimentary evolution stages: Subduction period, basin development period, subsidence period and compression deformation period. The overall heat flow value of Japan Sea is high, and it is distributed annularly along Yamato Ridge. The geothermal heat flow value is about 50–130 MW/m^(2), and the average heat flow is75.9±19.8 MW/m^(2), which has a typical “hot basin ”. The high heat flow background provides unique thermal evolution conditions for hydrocarbon generation, which leads to the high temperature and rapid evolution. The authors summarized as “early hydrocarbon generation, rapid maturity and shallow and narrow hydrocarbon generation window”. The type of oil and gas is mainly natural gas, and it mainly distributed in Neogene oil and gas reservoirs. The trap types are mainly structural traps, lithologic traps and composite traps. In addition, the pre-Neogene bedrock oil and gas reservoirs also show a good exploration prospect. The resource prospecting indicates that Niigata Basin, Ulleung Basin and kitakami Basin are the main target areas for future exploration and development.展开更多
基金This study was supported by the project ofthe Science and Technology Innovation Fund of Command Center of Natural Resources Intergrated Survey entitled“Temporal and spatial distribution of paleochannel and origin of organic carbon burial in the Western Bohai Sea since 2.28Ma”(KC20220011)the project entitled“Characterization of Carboniferous-Early Permian heterogeneous porous carbonate reservoirs and hydrocarbon potential analysis in the central uplift of the South Yellow Sea Basin”(KLSG2304)+3 种基金by the Key laboratory of Submarine Science,Ministry of Natural Resources,the project entitled“1∶50000 Marine regional Geological survey in Caofeidian Sea Area,Bohai Sea”(ZD20220602)“1∶250000 Marine regional Geological survey in Weihai Sea Area,North Yellow Sea”(DD20230412)“Geological survey on tectonic and sedimentary conditions of Laoshan uplift”(DD2016015)by the China Geological Survey,and the project entitled“Study on Hydrocarbon Accumulation Failure and Fluid Evolution Reduction of the Permian Reservoir in the Laoshan Uplift,South Yellow Sea”(42076220)organized by the National Natural Science Foundation of China.
文摘Mesozoic-Palaeozoic marine carbonate rocks are crucial hydrocarbon reservoirs in the Central Uplift area of the South Yellow Sea Basin(SYSB).Due to the scarcity of boreholes and the significant heterogeneity of carbonate reservoirs,the distribution of porous carbonate reservoirs and their related key controlling factors remain unclear.In this study,factors affecting the distribution of porous Carboniferous-Early Permian carbonate reservoirs in the SYSB were investigated through seismic inversion and isotope analysis.The log-seismic characteristics of porous carbonate reservoirs,sensitive lithology parameters,and physical property parameters were extracted and analyzed.The pre-stack simultaneous inversion technique was applied to predict the lithology and physical properties of porous carbonate reservoirs.Moreover,the sedimentary of carbonate was analyzed using isotopes of carbon,oxygen,and strontium.The results show that porous carbonate reservoirs are mainly developed in the open platform sediments with porosities of 3%-5%and are mainly distributed in the paleo-highland(Huanglong Formation and Chuanshan Formation)and the slope of paleo-highland(Hezhou Formation).The porous carbonate reservoirs of the Qixia Formation are only locally developed.In addition,the negativeδ13C excursions indicate a warm and humid tropical climate with three sea-level fluctuations in the study area from the Carboniferous to Early Permian.The favorable conditions for developing porous carbonate rocks include the sedimentary environment and diagenetic process.The primary pore tends to form in high-energy environments of the paleo-highland,and the secondary pore is increased by dissolution during the syngenetic or quasi-syngenetic period.According to the hydrocarbon potential analysis,the Late Ordovician Wufeng Formation and Lower Silurian Gaojiabian Formation are the source rocks in the high-maturity-over-maturity stage,the Carboniferous-Lower Permian carbonate is the good reservoirs,and the Late Permian Longtan-Dalong Formation is the stable seal,ensuring a huge hydrocarbon accumulation potential in SYSB.The methods proposed in this study can be applied to other carbonate-dominated strata worldwide.
文摘The South Yellow Sea Basin is a large sedimentary basin superimposed by the Mesozoic-Paleozoic marine sedimentary basin and the Mesozoic-Cenozoic terrestrial sedimentary basin, where no oil and gas fields have been discovered after exploration for 58 years. After the failure of oil and gas exploration in terrestrial basins, the exploration target of the South Yellow Sea Basin turned to the marine Mesozoic- Paleozoic strata. After more than ten years' investigation and research, a lot of achievements have been obtained. The latest exploration obtained effective seismic reflection data of deep marine facies by the application of seismic exploration technology characterized by high coverage, abundant low-frequency components and strong energy source for the deep South Yellow Sea Basin. In addition, some wells drilled the Middle-Upper Paleozoic strata, with obvious oil and gas shows discovered in some horizons. The recent petroleum geological research on the South Yellow Sea Basin shows that the structure zoning of the marine residual basin has been redetermined, the basin structure has been defined, and 3 seismic reflection marker layers are traceable and correlatable in the residual thick Middle-Paleozoic strata below the continental Meso-Cenozoic strata in the South Yellow Sea Basin. Based on these, the seismic sequence of the marine sedimentary strata was established. According to the avaliable oil and gas exploration and research, the marine Mesozoic-Paleozoic oil and gas prospects of the South Yellow Sea were predicted as follows.(1) The South Yellow Sea Basin has the same sedimentary formation and evolution history during the sedimentary period of the Middle-Paleozoic marine basin with the Sichuan Basin.(2) There are 3 regional high-quality source rocks.(3) The carbonate and clastic reservoirs are developed in the Mesozoic- Paleozoic strata.(4) The three source-reservoir-cap assemblages are relatively intact.(5) The Laoshan Uplift is a prospect area for the Lower Paleozoic oil and gas, and the Wunansha Uplift is one for the marine Upper Paleozoic oil and gas.(6) The Gaoshi stable zone in the Laoshan Uplift is a favorable zone.(7) The marine Mesozoic-Paleozoic strata in the South Yellow Sea Basin has the geological conditions required to form large oil and gas fields, with remarkable oil and gas resources prospect. An urgent problem to be addressed now within the South Yellow Sea Basin is to drill parametric wells for the Lower Paleozoic strata as the target, to establish the complete stratigraphic sequence since the Paleozoic period, to obtain resource evaluation parameters, and to realize the strategic discovery and achieve breakthrough in oil and gas exploration understanding.
文摘Based on the seismic data gathered in past years and the correlation between the sea and land areas of the Lower Yangtze Platform,the structural characteristics of the South Yellow Sea Basin since the Indosinian tectonic movement is studied in this paper.Three stages of structural deformation can be distinguished in the South Yellow Sea Basin since the Indosinian.The first stage,Late Indosinian to Early Yanshanian, was dominated by foreland deformation including both the uplifting and subsidence stages under an intensively compressional environment.The second stage,which is called the Huangqiao Event in the middle Yanshanian,was a change for stress fields from compression to extension.While in the third stage (the Sanduo Event)in the Late Himalayan,the basin developed a depression in the Neogene-Quatemary after rifting in the Late Cretaceous-Paleogene.The long-time evolution controlled 3 basin formation stages from a foreland basin,then a fault basin to a final depression basin.In conclusion,since the Indosinian,the South Yellow Sea Basin has experienced compressional fold and thrust,collisional orogen,compressional and tensional pulsation,strike-slip,extensional fault block and inversion structures,compression and convergence.The NE,NEE,nearly EW and NW trending structures developed in the basin.From west to east,the structural trend changed from NEE to near EW to NW.While from north to south,they changed from NEE to near EW with a strong-weak-strong zoning sequence.Vertically,the marine and terrestrial facies basins show a "seesaw"pattern with fold and thrust in the early stages,which is strong in the north and weak in the south and an extensional fault in later stages,which is strong in the north and weak in the south.In the marine facies'basin,thrust deformation is more prevailing in the upper structural layer than that in the lower layer.The tectonic mechanism in the South Yellow Sea Basin is mainly affected by the collision between the Yangtze and North China Block,while the stress environment of large-scale strike- slip faults was owing to subduction of the Paleo-Pacific plate.The southern part of the Laoshan uplift is a weak deformation zone as well as a stress release zone,and the Meso-Paleozoic had been weakly reformed in later stages.The southern part of the Laoshan uplift is believed,therefore,to be a promising area for oil and gas exploration.
文摘1.Objectives The study of the paleo-reservoir is of great significance for oil and gas exploration.Firstly,the existence of paleoreservoirs can reflect there has been hydrocarbon accumulation process in this area,where there once was the advantageous condition with source-reservoir-cap combination;secondly,it can indicate that this area has certain resource potential.The purpose of this research is: through the study of the paleo-reservoir of CSDP-2 well in the Laoshan uplift of the South Yellow Sea Basin,which is a scientific investigation well,it can provide geological basis for marine oil and gas exploration of the Mesozoic and Paleozoic in the Laoshan uplift of the South Yellow Sea Basin,and at the same time can provide important information for future exploration target selection.
文摘1.Objective Fluid inclusions are the only way to obtain the volatile components in the process of hydrocarbon accumulation. The Marine Paleozoic strata in the South Yellow Sea Basin are of great thickness and widely distributed. The Lower Paleozoic source rocks, reservoirs and caprocks are developed and have generally good hydrocarbon geological conditions.
基金jointly supported by the Major Project of National Laboratory for Marine Science and Technology (Qingdao) (2021QNLM020001-1, 2021QNLM020001-4)the Project of China Geology Survey (DD20221723, DD20230317)+3 种基金the National Natural Science Foundation of China (41776075, 42076220 and 42206234)the Natural Science Foundation of Shandong Province (ZR2020QD038)the Major Basic Research Projects of Shandong Province (ZR2021ZD09)funded by the Qingdao Institute of Marine Geology, China Geological Survey。
文摘The Sea of Japan is located in the southeast margin of Eurasia, in the triangle area of the western Pacific Ocean. Due to the interaction of the Pacific plate, Eurasian plate and Philippine plate, its tectonic environment is complex, forming a typical trench-arc-basin system. At present, 148 oil and gas fields have been discovered in Japan, with an oil and gas resource of 255.78×10^(6) t, showing a good prospect for oil and gas exploration. Based on the previous research and the recently collected geological and geophysical data, the characteristics of tectonic-sedimentary evolution and geothermal field in the basins around the Sea of Japan are analyzed. The results show that the tectonic evolution of the basin is mainly controlled by plate subduction and back-arc oceanic crust expansion, and it mainly undergone four tectonic-sedimentary evolution stages: Subduction period, basin development period, subsidence period and compression deformation period. The overall heat flow value of Japan Sea is high, and it is distributed annularly along Yamato Ridge. The geothermal heat flow value is about 50–130 MW/m^(2), and the average heat flow is75.9±19.8 MW/m^(2), which has a typical “hot basin ”. The high heat flow background provides unique thermal evolution conditions for hydrocarbon generation, which leads to the high temperature and rapid evolution. The authors summarized as “early hydrocarbon generation, rapid maturity and shallow and narrow hydrocarbon generation window”. The type of oil and gas is mainly natural gas, and it mainly distributed in Neogene oil and gas reservoirs. The trap types are mainly structural traps, lithologic traps and composite traps. In addition, the pre-Neogene bedrock oil and gas reservoirs also show a good exploration prospect. The resource prospecting indicates that Niigata Basin, Ulleung Basin and kitakami Basin are the main target areas for future exploration and development.