期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
The dynamic catalysis of Ga/ZSM-5 catalysts for propane-CO_(2) coupling conversion to aromatics and syngas
1
作者 Yonggui Song Zhong-Pan Hu +12 位作者 Haohao Feng Enze Chen Le Lv yimo wu Zhen Liu Yong Jiang Xiaozhi Su Feifei Xu Mingchang Zhu Jingfeng Han Yingxu Wei Svetlana Mintova Zhongmin Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期513-519,I0011,共8页
Alkane coupling with CO_(2) by metal-containing zeolites catalysis is found to be a promising way to produce aromatics and syngas in recent years,but the real active sites and the role of CO_(2) are still unclear owin... Alkane coupling with CO_(2) by metal-containing zeolites catalysis is found to be a promising way to produce aromatics and syngas in recent years,but the real active sites and the role of CO_(2) are still unclear owing to the quick evolution of the metallic active sites and the complex reaction processes including direct propane aromatization,CO_(2) hydrogenation,reverse water-gas shift reaction,and propane-CO_(2) coupling aromatization.Herein,Ga/ZSM-5 catalysts were constructed to study the dynamic evolution of the metallic active sites and the role of CO_(2) during the propane and CO_(2) coupling reaction.After optimizing the reaction conditions,a notable propane conversion rate of 97.9%and an impressive aromatics selectivity of 80.6%in hydrocarbons can be achieved at the conditions of 550℃and CO_(2)/C_(3)H_(8) of 4.^(13)CO_(2)isotope experiments illustrate that C-atoms of CO_(2) can enter into CO(86.5%)and aromatics(10.8%)during the propane-CO_(2) coupling reaction process.In situ XANES and FTIR spectroscopies at 550℃and H_(2)/C_(3)H_(8) atmosphere reveal that GaO_(x) species can be gradually dispersed into[GaH_(2)]^(+)/[GaH]^(2+)on the Bronsted acid sites of ZSM-5 zeolite during H_(2) and/or C_(3)H_(8) treatment,which are the real active sites for propane-CO_(2) coupling conversion.In situ CO_(2)-FTIR experiments demonstrate that the[GaH_(2)]^(+)/[GaH]^(2+)species can react with CO_(2) and accelerate the propane and CO_(2) coupling process.This work not only presents a cost-effective avenue for CO_(2) utilization,but also contributes to the active site design for improved alkane and CO_(2) activation in coupling reaction system. 展开更多
关键词 Carbon dioxide Propane aromatization Ga/ZSM-5 Gallium hydride Spectroscopy
在线阅读 下载PDF
Conversion of methanol to propylene over SAPO-14:Reaction mechanism and deactivation
2
作者 Ye Wang Jingfeng Han +7 位作者 Nan Wang Bing Li Miao Yang yimo wu Zixiao Jiang Yingxu Wei Peng Tian Zhongmin Liu 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2022年第8期2259-2269,共11页
Methanol to olefins(MTO)reaction as an important non-oil route to produce light olefins has been industrialized,and received over 80% ethylene plus propylene selectivity.However,to achieve high single ethylene or prop... Methanol to olefins(MTO)reaction as an important non-oil route to produce light olefins has been industrialized,and received over 80% ethylene plus propylene selectivity.However,to achieve high single ethylene or propylene selectivity towards the fluctuated market demand is still full of challenge.Small-pore SAPO-14 molecular sieve is a rare MTO catalyst exhibiting extra-high propylene selectivity.It provides us a valuable clue for further understanding of the relationship between molecular sieve structure and MTO catalytic performance.In this work,a seconds-level sampling fixed-bed reactor was used to capture real-time product distributions,which help to achieve more selectivity data in response to very short catalytic life of SAPO-14.Changes in product distribution,especially during the low activity stage,reflect valuable information on the reaction pathway.Combined with in situ diffuse reflectance infrared Fourier-transform spectroscopy,in situ ultraviolet Raman measurements and ^(12)C/^(13)C isotopic switch experiments,a reaction pathway evolution from dual cycle to olefins-based cycle dominant was revealed.In addition,the deactivation behaviors of SAPO-14 were also investigated,which revealed that polymethylbenzenes have been the deactivated species in such a situation.This work provides helpful hints on the development of characteristic methanol to propylene(MTP)catalysts. 展开更多
关键词 Methanol to propylene SAPO-14 molecular sieve UV Raman spectroscopy Dual-cycle mechanism DEACTIVATION
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部