Analysis, evaluation and interpretation of measured signals become important components in engineering research and practice, especially for material characteristic parameters which can not be obtained directly by exp...Analysis, evaluation and interpretation of measured signals become important components in engineering research and practice, especially for material characteristic parameters which can not be obtained directly by experimental measurements. The present paper proposes a hybrid-inverse analysis method for the identification of the nonlinear material parameters of any individual component from the mechanical responses of a global composite. The method couples experimental approach, numerical simulation with inverse search method. The experimental approach is used to provide basic data. Then parameter identification and numerical simulation are utilized to identify elasto-plastic material properties by the experimental data obtained and inverse searching algorithm. A numerical example of a stainless steel clad copper sheet is consid- ered to verify and show the applicability of the proposed hybrid-inverse method. In this example, a set of material parameters in an elasto-plastic constitutive model have been identified by using the obtained experimental data.展开更多
In this work, the mechanical behavior of a block of soft material subject to large deformation from a series of wedge-shaped indenters is evaluated. Data fields acquired from digital image correlation (DIC) are comp...In this work, the mechanical behavior of a block of soft material subject to large deformation from a series of wedge-shaped indenters is evaluated. Data fields acquired from digital image correlation (DIC) are compared with the existing theoretical models. The slope angles of the wedges vary from 5° to 73.5°, and the minimum measure- ment uncertainties of the DIC system are established in advance to define the accuracy. It is concluded that the assumptions underpinning the analytical theory make it difficult to characterize large deformation of soft materials during contact. The strain fields are also obtained from the measured displacement field and verify the previously postulated existence of two deformation sectors, namely, a so-called shrinkage sector symmetric to the loading axis and an expansion sector, which become smaller with the increasing load and decreasing wedge angle.展开更多
In this review, acritical look at the research progress ofexperimentalsolid mechanics in China for the past years is presented. Issues are discussed of the discovery and development of new fundamental methods and tech...In this review, acritical look at the research progress ofexperimentalsolid mechanics in China for the past years is presented. Issues are discussed of the discovery and development of new fundamental methods and techniques versus performance benchmarking for many of their applications. Included herein are photoelasticity and various forms of modern photomechanics, acoustical techniques, image processing and videometrics, radial and spectrum techniques, and experimental mechanics on micro/nano scale. It is also noticed that both the ever developed instrumentation and specialized synthetical techniques have played important roles in advancing experimental mechanics in scientific researches and industrial applications. Finally, an attempt is made to look into the future of experimental solid mechanics with personal opinions offered on what the future trends will be for the researches in the field.展开更多
Electrode stress is one of the main driving forces of electrochemical degradation,which is directly related to battery cycle life,thus attracting great interest.Herein,we propose an in situ method to measure bilayer s...Electrode stress is one of the main driving forces of electrochemical degradation,which is directly related to battery cycle life,thus attracting great interest.Herein,we propose an in situ method to measure bilayer stresses in film-substrate electrodes during electrochemical processes.This method consists of two parts:stress models featuring Li-dependent material modulus and in situ deformation measurements,through which electrode bilayer stresses evolution accompanied by Li-dependent material modulus can be quantitatively characterized.As application of the method,typical silicon-composite and carbon-composite film-substrate electrodes are selected for in situ mechanical measurements and experimental analysis is performed.Results show that silicon material and carbon material exhibit significant,continuous softening and stiffening,respectively.In two film-substrate electrodes,electrode material films experience compressive stress and current collector substrates undergo a tensile-to-compressive conversion across the thickness.Besides,moduli and stresses in both electrodes vary nonlinearly with capacity,presenting non-overlapping paths between lithiation and delithiation.Based on experimental data,we further demonstrate the key role of Li-dependent modulus on electrode stresses,finding that silicon material softening decreases and carbon material stiffening increases electrode stresses.The deficiencies of current stress measurement method based on Stoney equation and the applicability of our method are discussed.展开更多
Carbon nanotube fibers can be fabricated by the chemical vapor deposition spinning process. They are promising for a wide range of applications such as the building blocks of high-performance composite materials and m...Carbon nanotube fibers can be fabricated by the chemical vapor deposition spinning process. They are promising for a wide range of applications such as the building blocks of high-performance composite materials and micro-electrochemical sensors. Mechanical twisting is an effective means of enhancing the mechanical properties of carbon nanotube fibers during fabrication or by post processing. However, the effects of twisting on the mechanical properties remain an unsolved issue. In this paper, we present a two-scale damage mechanics model to quantitatively investigate the effects of twisting on the mechanical properties of carbon nanotube fibers. The numerical results demonstrate that the developed damage mechanics model can effectively describe the elastic and the plastic-like behaviors of carbon nanotube fibers during the tension process. A definite range of twisting which can effectively enhance the mechanical properties of carbon nanotube fiber is given. The results can be used to guide the mechanical twisting of carbon nanotube fibers to improve their properties and help optimize the mechanical performance of carbon nanotube-based materials.展开更多
Soft material is becoming increasingly important to many industries, which leads to the demand for a better understanding of its mechanical properties under large deformation. In this paper, a technique of integrating...Soft material is becoming increasingly important to many industries, which leads to the demand for a better understanding of its mechanical properties under large deformation. In this paper, a technique of integrating the digital moire method and embedded-grating approach is presented for investigating mechanical behaviors of a vulcanized silicone rubber in contact with a wedge-shaped indenter. Two distinct deformation sectors are observed from the experimental result. A simple way of computing strain is also presented by analysing grid deformation within the framework of geometrical nonlinearity. Three regions were observed from strain distribution along the horizontal direction: the contact region, the sink-in region and the far-field region. Moreover, the extent of the sticky region and that of the slippy region within the contact interface are distinguished, which can provide realistic data for theoretical modelling. Based on the finite deformation elasticity theory, the distribution of contact pressure and shear stress over the contact interface are derived for prediction of possible cracks.展开更多
Rock-soil interface mixed ground(RSI)is often encountered in tunnel construction.The excavation loads of tunnel boring machines(TBMs)are controlled by the interaction characteristics between TBM and rock/soil layers.T...Rock-soil interface mixed ground(RSI)is often encountered in tunnel construction.The excavation loads of tunnel boring machines(TBMs)are controlled by the interaction characteristics between TBM and rock/soil layers.The different properties of rock and soil cause the varying interaction range and stress distribution.Currently,there have been several studies available to estimate excavation loads under RSI,and the conclusion is that the total loads increase with increasing the rock layer proportion in the excavation face.However,the previous studies cannot take the difference of rock/soil properties into account,except for the calculation of cutters loads.Therefore,the interaction characteristics between RSI and TBM is unclear.This paper analyzes the interaction characteristics between TBM’s main components and complex geological conditions(e.g.,layered soil,layered rock,and RSI condition).A model is proposed to calculate the total thrust and total torque assuming quasi-static equilibrium of the tunneling equipment.The rationality and applicability of the model are discussed and verified by two typical projects.Furthermore,the geological adaptability is discussed in terms of the excavation difficulty and the matching relationship between total torque and total thrust.The results indicate that when the rock layer proportion in the excavation face increases,the reduction of overall extrusion and friction loads is 1.5 times higher than the increase of disc cutters breaking load.The total loads and the ratio of the total torque to total thrust decrease approximately linearly.There is a power function relationship between the excavation difficulty index and the penetration depth.The results of this study provide an important reference for the total loads design of equipment propulsion systems and the parameter adjustment during tunnel construction.展开更多
Studies of displacement fields and stress concentration, due to uniform temperature change in a functionally gradient material (FGM) specimen and bimaterial (NFGM) specimen, have been made by Moire interferometry and ...Studies of displacement fields and stress concentration, due to uniform temperature change in a functionally gradient material (FGM) specimen and bimaterial (NFGM) specimen, have been made by Moire interferometry and finite element method. Results show that the thermal stresses concentration has been effectively reduced, and the distribution of the thermal deformations and thermal strains have also been relaxed and improved by transition layer of FGM.展开更多
基金supported by the National Natural Science Foundation of China (Nos.10732080 and 10572102)National Basic Research Program of China (No.2007CB714000)
文摘Analysis, evaluation and interpretation of measured signals become important components in engineering research and practice, especially for material characteristic parameters which can not be obtained directly by experimental measurements. The present paper proposes a hybrid-inverse analysis method for the identification of the nonlinear material parameters of any individual component from the mechanical responses of a global composite. The method couples experimental approach, numerical simulation with inverse search method. The experimental approach is used to provide basic data. Then parameter identification and numerical simulation are utilized to identify elasto-plastic material properties by the experimental data obtained and inverse searching algorithm. A numerical example of a stainless steel clad copper sheet is consid- ered to verify and show the applicability of the proposed hybrid-inverse method. In this example, a set of material parameters in an elasto-plastic constitutive model have been identified by using the obtained experimental data.
基金Project supported by the National Basic Research Program of China(No.2012CB937500)the National Natural Science Foundation of China(No.11127292)
文摘In this work, the mechanical behavior of a block of soft material subject to large deformation from a series of wedge-shaped indenters is evaluated. Data fields acquired from digital image correlation (DIC) are compared with the existing theoretical models. The slope angles of the wedges vary from 5° to 73.5°, and the minimum measure- ment uncertainties of the DIC system are established in advance to define the accuracy. It is concluded that the assumptions underpinning the analytical theory make it difficult to characterize large deformation of soft materials during contact. The strain fields are also obtained from the measured displacement field and verify the previously postulated existence of two deformation sectors, namely, a so-called shrinkage sector symmetric to the loading axis and an expansion sector, which become smaller with the increasing load and decreasing wedge angle.
基金Project supported by the NSFC (Nos.10472112,19232020,10627201,10972113, 90916010 and 10732080)the National Basic Research Program of China (Nos.2007CB936803 and 2010CB631005)SRFDP (Nos.20070003053 and 20090002110048)
文摘In this review, acritical look at the research progress ofexperimentalsolid mechanics in China for the past years is presented. Issues are discussed of the discovery and development of new fundamental methods and techniques versus performance benchmarking for many of their applications. Included herein are photoelasticity and various forms of modern photomechanics, acoustical techniques, image processing and videometrics, radial and spectrum techniques, and experimental mechanics on micro/nano scale. It is also noticed that both the ever developed instrumentation and specialized synthetical techniques have played important roles in advancing experimental mechanics in scientific researches and industrial applications. Finally, an attempt is made to look into the future of experimental solid mechanics with personal opinions offered on what the future trends will be for the researches in the field.
文摘Electrode stress is one of the main driving forces of electrochemical degradation,which is directly related to battery cycle life,thus attracting great interest.Herein,we propose an in situ method to measure bilayer stresses in film-substrate electrodes during electrochemical processes.This method consists of two parts:stress models featuring Li-dependent material modulus and in situ deformation measurements,through which electrode bilayer stresses evolution accompanied by Li-dependent material modulus can be quantitatively characterized.As application of the method,typical silicon-composite and carbon-composite film-substrate electrodes are selected for in situ mechanical measurements and experimental analysis is performed.Results show that silicon material and carbon material exhibit significant,continuous softening and stiffening,respectively.In two film-substrate electrodes,electrode material films experience compressive stress and current collector substrates undergo a tensile-to-compressive conversion across the thickness.Besides,moduli and stresses in both electrodes vary nonlinearly with capacity,presenting non-overlapping paths between lithiation and delithiation.Based on experimental data,we further demonstrate the key role of Li-dependent modulus on electrode stresses,finding that silicon material softening decreases and carbon material stiffening increases electrode stresses.The deficiencies of current stress measurement method based on Stoney equation and the applicability of our method are discussed.
基金Support from the 973 Program of Most(Grant Nos.2012CB937500and2010CB934700)the National Natural Science Foundation of China(under Grant Nos.10732080and10802041)Key Grant of Chinese Ministry of Education(309010)is acknowledged
文摘Carbon nanotube fibers can be fabricated by the chemical vapor deposition spinning process. They are promising for a wide range of applications such as the building blocks of high-performance composite materials and micro-electrochemical sensors. Mechanical twisting is an effective means of enhancing the mechanical properties of carbon nanotube fibers during fabrication or by post processing. However, the effects of twisting on the mechanical properties remain an unsolved issue. In this paper, we present a two-scale damage mechanics model to quantitatively investigate the effects of twisting on the mechanical properties of carbon nanotube fibers. The numerical results demonstrate that the developed damage mechanics model can effectively describe the elastic and the plastic-like behaviors of carbon nanotube fibers during the tension process. A definite range of twisting which can effectively enhance the mechanical properties of carbon nanotube fiber is given. The results can be used to guide the mechanical twisting of carbon nanotube fibers to improve their properties and help optimize the mechanical performance of carbon nanotube-based materials.
基金Project supported by the National Natural Science Foundation of China(Nos.11127202 and 11227202)
文摘Soft material is becoming increasingly important to many industries, which leads to the demand for a better understanding of its mechanical properties under large deformation. In this paper, a technique of integrating the digital moire method and embedded-grating approach is presented for investigating mechanical behaviors of a vulcanized silicone rubber in contact with a wedge-shaped indenter. Two distinct deformation sectors are observed from the experimental result. A simple way of computing strain is also presented by analysing grid deformation within the framework of geometrical nonlinearity. Three regions were observed from strain distribution along the horizontal direction: the contact region, the sink-in region and the far-field region. Moreover, the extent of the sticky region and that of the slippy region within the contact interface are distinguished, which can provide realistic data for theoretical modelling. Based on the finite deformation elasticity theory, the distribution of contact pressure and shear stress over the contact interface are derived for prediction of possible cracks.
基金funded by National Key R&D Program of China[No.2018YFB1702505]National Natural Science Foundation of China[Grant Nos.12022205 and 11872269].
文摘Rock-soil interface mixed ground(RSI)is often encountered in tunnel construction.The excavation loads of tunnel boring machines(TBMs)are controlled by the interaction characteristics between TBM and rock/soil layers.The different properties of rock and soil cause the varying interaction range and stress distribution.Currently,there have been several studies available to estimate excavation loads under RSI,and the conclusion is that the total loads increase with increasing the rock layer proportion in the excavation face.However,the previous studies cannot take the difference of rock/soil properties into account,except for the calculation of cutters loads.Therefore,the interaction characteristics between RSI and TBM is unclear.This paper analyzes the interaction characteristics between TBM’s main components and complex geological conditions(e.g.,layered soil,layered rock,and RSI condition).A model is proposed to calculate the total thrust and total torque assuming quasi-static equilibrium of the tunneling equipment.The rationality and applicability of the model are discussed and verified by two typical projects.Furthermore,the geological adaptability is discussed in terms of the excavation difficulty and the matching relationship between total torque and total thrust.The results indicate that when the rock layer proportion in the excavation face increases,the reduction of overall extrusion and friction loads is 1.5 times higher than the increase of disc cutters breaking load.The total loads and the ratio of the total torque to total thrust decrease approximately linearly.There is a power function relationship between the excavation difficulty index and the penetration depth.The results of this study provide an important reference for the total loads design of equipment propulsion systems and the parameter adjustment during tunnel construction.
文摘Studies of displacement fields and stress concentration, due to uniform temperature change in a functionally gradient material (FGM) specimen and bimaterial (NFGM) specimen, have been made by Moire interferometry and finite element method. Results show that the thermal stresses concentration has been effectively reduced, and the distribution of the thermal deformations and thermal strains have also been relaxed and improved by transition layer of FGM.