In the summer of 2022,China(especially the Yangtze River Valley,YRV)suffered its strongest heatwave(HW)event since 1961.In this study,we examined the influences of multiscale variabilities on the 2022 extreme HW in th...In the summer of 2022,China(especially the Yangtze River Valley,YRV)suffered its strongest heatwave(HW)event since 1961.In this study,we examined the influences of multiscale variabilities on the 2022 extreme HW in the lower reaches of the YRV,focusing on the city of Shanghai.We found that about 1/3 of the 2022 HW days in Shanghai can be attributed to the long-term warming trend of global warming.During mid-summer of 2022,an enhanced western Pacific subtropical high(WPSH)and anomalous double blockings over the Ural Mountains and Sea of Okhotsk,respectively,were associated with the persistently anomalous high pressure over the YRV,leading to the extreme HW.The Pacific Decadal Oscillation played a major role in the anomalous blocking pattern associated with the HW at the decadal time scale.Also,the positive phase of the Atlantic Multidecadal Oscillation may have contributed to regulating the formation of the double-blocking pattern.Anomalous warming of both the warm pool of the western Pacific and tropical North Atlantic at the interannual time scale may also have favored the persistency of the double blocking and the anomalously strong WPSH.At the subseasonal time scale,the anomalously frequent phases 2-5 of the canonical northward propagating variability of boreal summer intraseasonal oscillation associated with the anomalous propagation of a weak Madden-Julian Oscillation suppressed the convection over the YRV and also contributed to the HW.Therefore,the 2022 extreme HW originated from multiscale forcing including both the climate warming trend and air-sea interaction at multiple time scales.展开更多
The record-breaking mei-yu in the Yangtze-Huaihe River valley(YHRV)in 2020 was characterized by an early onset,a delayed retreat,a long duration,a wide meridional rainbelt,abundant precipitation,and frequent heavy rai...The record-breaking mei-yu in the Yangtze-Huaihe River valley(YHRV)in 2020 was characterized by an early onset,a delayed retreat,a long duration,a wide meridional rainbelt,abundant precipitation,and frequent heavy rainstorm processes.It is noted that the East Asian monsoon circulation system presented a significant quasi-biweekly oscillation(QBWO)during the mei-yu season of 2020 that was associated with the onset and retreat of mei-yu,a northward shift and stagnation of the rainbelt,and the occurrence and persistence of heavy rainstorm processes.Correspondingly,during the mei-yu season,the monsoon circulation subsystems,including the western Pacific subtropical high(WPSH),the upper-level East Asian westerly jet,and the low-level southwesterly jet,experienced periodic oscillations linked with the QBWO.Most notably,the repeated establishment of a large southerly center,with relatively stable latitude,led to moisture convergence and ascent which was observed to develop repeatedly.This was accompanied by a long-term duration of the mei-yu rainfall in the YHRV and frequent occurrences of rainstorm processes.Moreover,two blocking highs were present in the middle to high latitudes over Eurasia,and a trough along the East Asian coast was also active,which allowed cold air intrusions to move southward through the northwestern and/or northeastern paths.The cold air frequently merged with the warm and moist air from the low latitudes resulting in low-level convergence over the YHRV.The persistent warming in the tropical Indian Ocean is found to be an important external contributor to an EAP/PJ-like teleconnection pattern over East Asia along with an intensified and southerly displaced WPSH,which was observed to be favorable for excessive rainfall over YHRV.展开更多
Using the hourly precipitation records of meteorological stations in Shanghai, covering a period of almost a century (1916-2014), the long-term variation of extreme heavy precipitation in Shanghai on multiple spatia...Using the hourly precipitation records of meteorological stations in Shanghai, covering a period of almost a century (1916-2014), the long-term variation of extreme heavy precipitation in Shanghai on multiple spatial and temporal scales is analyzed, and the effects of urbanization on hourly rainstorms studied. Results show that: (1) Over the last century, extreme hourly precipitation events enhanced significantly. During the recent urbanization period from 1981 to 2014, the frequency of heavy precipitation increased significantly, with a distinct localized and abrupt characteristic. (2) The spatial distribution of long-term trends for the occurrence frequency and total precipitation intensity of hourly heavy precipitation in Shanghai shows a distinct urban rain-island feature; namely, heavy precipitation was increasingly focused in urban and suburban areas. Attribution analysis shows that urbanization in Shanghai contributed greatly to the increase in both frequency and intensity of heavy rainfall events in the city, thus leading to an increasing total precipitation amount of heavy rainfall events. In addition, the diurnal variation of rainfall intensity also shows distinctive urban-rural differences, especially during late afternoon and early nighttime in the city area. (3) Regional warming, with subsequent enhancement of water vapor content, convergence of moisture flux and atmospheric instability, provided favorable physical backgrounds for the formation of extreme precipitation. This accounts for the consistent increase in hourly heavy precipitation over the whole Shanghai area during recent times.展开更多
This paper presents a concise summary of recent studies on the long-term variations of haze in NorthChina and on the environmental and dynamic conditions for severe persistent haze events. Resultsindicate that haze da...This paper presents a concise summary of recent studies on the long-term variations of haze in NorthChina and on the environmental and dynamic conditions for severe persistent haze events. Resultsindicate that haze days have an obviously rising trend over the past 50 years in North China. Theoccurrence frequency of persistent haze events has a similar rising trend due to the continuous riseof winter temperatures, decrease of surface wind speeds, and aggravation of atmospheric stability. InNorth China, when severe persistent haze events occur, anomalous southwesterly winds prevail in thelower troposphere, providing sufficient moisture for the formation of haze. Moreover, North China ismainly controlled by a deep downdraft in the mid-lower troposphere, which contributes to reducing thethickness of the planetary boundary layer, obviously reducing the atmospheric capacity for pollutants.This atmospheric circulation and sinking motion provide favorable conditions for the formation andmaintenance of haze in North China.展开更多
In the first half of winter 2020/21,China has experienced an extremely cold period across both northern and southern regions,with record-breaking low temperatures set in many stations of China.Meanwhile,a moderate La ...In the first half of winter 2020/21,China has experienced an extremely cold period across both northern and southern regions,with record-breaking low temperatures set in many stations of China.Meanwhile,a moderate La Niña event which exceeded both oceanic and atmospheric thresholds began in August 2020 and in a few months developed into its mature phase,just prior to the 2020/21 winter.In this report,the mid−high-latitude large-scale atmospheric circulation anomalies in the Northern Hemisphere,which were forced by the negative phase of Arctic Oscillation,a strengthened Siberian High,an intensified Ural High and a deepened East Asian Trough,are considered to be the direct reason for the frequent cold surges in winter 2020/21.At the same time,the synergistic effect of the warm Arctic and the cold tropical Pacific(La Niña)provided an indispensable background,at a hemispheric scale,to intensify the atmospheric circulation anomalies in middle-to-high latitudes.In the end,a most recent La Niña prediction is provided and the on-coming evolution of climate is discussed for the remaining part of the 2020/21 winter for the purpose of future decision-making and early warning.展开更多
The middle and lower reaches of the Yangtze River in eastern China during summer 2020 suffered the strongest mei-yu since 1961.In this work,we comprehensively analyzed the mechanism of the extreme mei-yu season in 202...The middle and lower reaches of the Yangtze River in eastern China during summer 2020 suffered the strongest mei-yu since 1961.In this work,we comprehensively analyzed the mechanism of the extreme mei-yu season in 2020,with focuses on the combined effects of the Madden-Julian Oscillation(MJO)and the cooperative influence of the Pacific and Indian Oceans in 2020 and from a historical perspective.The prediction and predictability of the extreme mei-yu are further investigated by assessing the performances of the climate model operational predictions and simulations.It is noted that persistent MJO phases 1−2 during June−July 2020 played a crucial role for the extreme mei-yu by strengthening the western Pacific subtropical high.Both the development of La Niña conditions and sea surface temperature(SST)warming in the tropical Indian Ocean exerted important influences on the long-lived MJO phases 1−2 by slowing down the eastward propagation of the MJO and activating convection related to the MJO over the tropical Indian Ocean.The spatial distribution of the 2020 mei-yu can be qualitatively captured in model real-time forecasts with a one-month lead.This can be attributed to the contributions of both the tropical Indian Ocean warming and La Niña development.Nevertheless,the mei-yu rainfall amounts are seriously underestimated.Model simulations forced with observed SST suggest that internal processes of the atmosphere play a more important role than boundary forcing(e.g.,SST)in the variability of mei-yu anomaly,implying a challenge in quantitatively predicting an extreme mei-yu season,like the one in 2020.展开更多
An unprecedented cold wave intruded into East Asia in early January 2021 and led to record-breaking or historical extreme low temperatures over vast regions.This study shows that a major stratospheric sudden warming(S...An unprecedented cold wave intruded into East Asia in early January 2021 and led to record-breaking or historical extreme low temperatures over vast regions.This study shows that a major stratospheric sudden warming(SSW)event at the beginning of January 2021 exerted an important influence on this cold wave.The major SSW event occurred on 2 January 2021 and subsequently led to the displacement of the stratospheric polar vortex to the East Asian side.Moreover,the SSW event induced the stratospheric warming signal to propagate downward to the mid-to-lower troposphere,which not only enhanced the blocking in the Urals-Siberia region and the negative phase of the Arctic Oscillation,but also shifted the tropospheric polar vortex off the pole.The displaced tropospheric polar vortex,Ural blocking,and another downstream blocking ridge over western North America formed a distinct inverted omega-shaped circulation pattern(IOCP)in the East Asia-North Pacific sector.This IOCP was the most direct and impactful atmospheric pattern causing the cold wave in East Asia.The IOCP triggered a meridional cell with an upward branch in East Asia and a downward branch in Siberia.The meridional cell intensified the Siberian high and low-level northerly winds,which also favored the invasion of the cold wave into East Asia.Hence,the SSW event and tropospheric circulations such as the IOCP,negative phase of Arctic Oscillation,Ural blocking,enhanced Siberian high,and eastward propagation of Rossby wave eventually induced the outbreak of an unprecedented cold wave in East Asia in early January 2021.展开更多
In this study, regional persistent haze events(RPHEs) in the Beijing–Tianjin–Hebei(BTH) region were identified based on the Objective Identification Technique for Regional Extreme Events for the period 1980–201...In this study, regional persistent haze events(RPHEs) in the Beijing–Tianjin–Hebei(BTH) region were identified based on the Objective Identification Technique for Regional Extreme Events for the period 1980–2013. The formation mechanisms of the severe RPHEs were investigated with focus on the atmospheric circulation and dynamic mechanisms. Results indicated that:(1) 49 RPHEs occurred during the past 34 years.(2) The severe RPHEs could be categorized into two types according to the large-scale circulation, i.e. the zonal westerly airflow(ZWA) type and the high-pressure ridge(HPR) type. When the ZWA-type RPHEs occurred, the BTH region was controlled by near zonal westerly airflow in the mid–upper troposphere.Southwesterly winds prevailed in the lower troposphere, and near-surface wind speeds were only 1–2 ms^-1. Warm and humid air originating from the northwestern Pacific was transported into the region, where the relative humidity was 70% to 80%, creating favorable moisture conditions. When the HPR-type RPHEs appeared, northwesterly airflow in the mid–upper troposphere controlled the region. Westerly winds prevailed in the lower troposphere and the moisture conditions were relatively weak.(3) Descending motion in the mid-lower troposphere caused by the above two circulation types provided a crucial dynamic mechanism for the formation of the two types of RPHEs. The descending motion contributed to a reduction in the height of the planetary boundary layer(PBL), which generated an inversion in the lower troposphere. This inversion trapped the abundant pollution and moisture in the lower PBL, leading to high concentrations of pollutants.展开更多
The Afro-Asian summer monsoon is a zonally planetary-scale system, with a large-scale rainbelt covering Africa, South Asia and East Asia on interdecadal timescales both in the past century(1901-2014) and during the ...The Afro-Asian summer monsoon is a zonally planetary-scale system, with a large-scale rainbelt covering Africa, South Asia and East Asia on interdecadal timescales both in the past century(1901-2014) and during the last three decades(1979-2014). A recent abrupt change of precipitation occurred in the late 1990 s. Since then, the entire rainbelt of the Afro-Asia monsoon system has advanced northwards in a coordinated way. Consistent increases in precipitation over the Huanghe-Huaihe River valley and the Sahel are associated with the teleconnection pattern excited by the warm phase of the Atlantic Multidecadal Oscillation(AMO). A teleconnection wave train, with alternating cyclones/anticyclones, is detected in the upper troposphere. Along the teleconnection path, the configuration of circulation anomalies in North Africa is characterized by coupling of the upper-level anticyclone(divergence) with low-level thermal low pressure(convergence), facilitating the initiation and development of ascending motions in the Sahel. Similarly, in East Asia, a coupled circulation pattern also excites ascending motion in the Huanghe-Huaihe River valley. The synchronous increase in precipitation over the Sahel and Huanghe-Huaihe River valley can be attributed to the co-occurrences and in-phase changes of ascending motion. On the other hand, the warm phase of the AMO results in significant warming in the upper troposphere in North Africa and the northern part of East Asia. Such warming contributes to intensification of the tropical easterly jet through increasing the meridional pressure gradient both at the entrance region(East Asia) and the exit region(Africa). Accordingly, precipitation over the Sahel and Huanghe-Huaihe River valley intensifies, owing to ageostrophic secondary cells. The results of this study provide evidence for a consistent and holistic interdecadal change in the Afro-Asian summer monsoon.展开更多
Although it is well known that the tropical easterly jet(TEJ)has a significant impact on summer weather and climate over India and Africa,whether the TEJ exerts an important impact on tropical cyclone(TC)activity over...Although it is well known that the tropical easterly jet(TEJ)has a significant impact on summer weather and climate over India and Africa,whether the TEJ exerts an important impact on tropical cyclone(TC)activity over the western North Pacific(WNP)remains unknown.In this study,we examined the impact of the TEJ on the interannual variability of TC genesis frequency over the WNP in the TC season(June-September)during 1980-2020.The results show a significant positive correlation between TC genesis frequency over the WNP and the jet intensity in the entrance region of the TEJ over the tropical western Pacific(in brief WP_TEJ),with a correlation coefficient as high as 0.66.The intensified WP_TEJ results in strong ageostrophic northerly winds in the entrance region and thus upper-level divergence to the north of the jet axis over the main TC genesis region in the WNP.This would lead to an increase in upward motion in the troposphere with enhanced low-level convergence,which are the most important factors to the increases in low-level vorticity,mid-level humidity and low-level eddy kinetic energy,and the decreases in sea level pressure and vertical wind shear in the region.All these changes are favorable for TC genesis over the WNP and vice versa.Further analyses indicate that the interannual variability of the WP_TEJ intensity is likely to be linked to the local diabatic heating over the Indian Ocean-western Pacific and the central Pacific El Ni?o-Southern Oscillation.展开更多
This work analyzes and discusses the influence of human activities on the meteorological conditions related to winter haze events in Beijing,Tianjin,and Hebei(i.e.,the Jing-Jin-Ji region)during 1961-2016,using the res...This work analyzes and discusses the influence of human activities on the meteorological conditions related to winter haze events in Beijing,Tianjin,and Hebei(i.e.,the Jing-Jin-Ji region)during 1961-2016,using the results of two numerical simulation experiments based on the Community Atmosphere Model version 5.1.1(http://www.cesm.ucar.edu/models/cesm1.0/cam/docs/ug5_1_1/book1.html)used in the international Climate Variability and Predictability Programme(CLIVAR)Climate of the 20th Century Detection and Attribution Project(C20C+D&A).The results show that,under the influence of human activities,the changes in dynamical and thermal meteorological conditions related to winter haze events in the Jing–Jin–Ji region are conducive to the formation and accumulation of haze,and prevent the diffusion of pollutants.The dynamical conditions mainly include the obvious weakening of the East Asian winter monsoon(EAWM)and the enhancement of the near-surface anomalous southerly wind.The thermal conditions include the obvious increase in surface temperature,and the enhancement of water vapor transport and near-surface inversion.The relative contribution of dynamical and thermal conditions to the variation of haze days in the Jing-Jin-Ji region is analyzed using statistical methods.The results show that the contribution of human activities to the increase of haze days in the Jing-Jin-Ji region is greater than that of natural forcing for the study period.To be specific,the dynamical meteorological factors contribute more to the haze days than the thermal meteorological factors.The contribution of thermal meteorological factors is basically the same in both scenarios.展开更多
The mei-yu season,typically occurring from mid-June to mid-July,on average,contributes to 32%of the annual precipitation over the Yangtze-Huai River Valley(YHRV)and represents one of the three heavy-rainfall periods i...The mei-yu season,typically occurring from mid-June to mid-July,on average,contributes to 32%of the annual precipitation over the Yangtze-Huai River Valley(YHRV)and represents one of the three heavy-rainfall periods in China.Here,we briefly review the large-scale background,synoptic pattern,moisture transport,and cloud and precipitation characteristics of the mei-yu frontal systems in the context of the ongoing Integrative Monsoon Frontal Rainfall Experiment(IMFRE)field campaign.Phase one of the campaign,IMFRE-I,was conducted from 10 June to 10 July 2018 in the middle reaches of the YHRV.Led by the Wuhan Institute of Heavy Rain(IHR)with primary support from the National Natural Science Foundation of China,IMFRE-I maximizes the use of our observational capacity enabled by a suite of ground-based and remote sensing instruments,most notably the IHR Mesoscale Heavy Rainfall Observing System(MHROS),including different wavelengths of radars,microwave radiometers,and disdrometers.The KA350(Shanxi King-Air)aircraft participating in the campaign is equipped with Ka-band cloud radar and different probes.The comprehensive datasets from both the MHROS and aircraft instruments are combined with available satellite observations and model simulations to answer the three scientific questions of IMFRE-I.Some highlights from a previously published special issue are included in this review,and we also briefly introduce the IMFRE-II field campaign,conducted during June-July 2020,where the focus was on the spatiotemporal evolutions of the mei-yu frontal systems over the middle and lower reaches of the YHRV.展开更多
Temperature change plays a crucial role in global change sciences. In the past several decades, comprehensive find- ings have been achieved on temperature change in China for the past 100 years. Several time series ha...Temperature change plays a crucial role in global change sciences. In the past several decades, comprehensive find- ings have been achieved on temperature change in China for the past 100 years. Several time series have been created to illustrate the averaged surface air temperature for the country. The correlations of these series range from 0.73 to 0.97. It is also achieved in better data quality, wider spatial data coverage, improved homogeneity of time series, and enhanced reliability of findings. The results show an annual mean temperature increase by 0.78±0.27℃ per 100 years in China for the period 1906-2005. After prolonging the period till 2007, it is found that 2007 is rated as the warmest year in the past 100 years. Although all the series, except one, reflect temperature changes in the eastern part of China before the 1930s, they represent the general temperature change in most parts of the country after the 1930s.展开更多
1. Introduction In the past 100 years, earth's changing climate has resulted in widespread and significant impacts, with the strongest and most comprehensive evidence of climate change being seen in natural systems. ...1. Introduction In the past 100 years, earth's changing climate has resulted in widespread and significant impacts, with the strongest and most comprehensive evidence of climate change being seen in natural systems. Some impacts on human systems have also been observed, including impacts on water resources and hydrological systems, species shifting and migration, and negative impacts on crop yields. The most noticeable impacts are believed to result from extreme climate-related events such as those that have recently occurred, including heat waves, droughts, floods, tropical cyclones, and wildfires.展开更多
An enhanced Warm Arctic-Cold Eurasia(WACE)pattern has been a notable feature in recent winters of the Northern Hemisphere.However,divergent results between model and observational studies of the WACE still remain.This...An enhanced Warm Arctic-Cold Eurasia(WACE)pattern has been a notable feature in recent winters of the Northern Hemisphere.However,divergent results between model and observational studies of the WACE still remain.This study evaluates the performance of 39 climate models participating in the Coupled Model Intercomparison Project Phase 6(CMIP6)in simulating the WACE pattern in winter of 1980-2014 and explores the key factors causing the differences in the simulation capability among the models.The results show that the multimodel ensemble(MME)can better simulate the spatial distribution of the WACE pattern than most single models.Models that can/cannot simulate both the climatology and the standard deviation of the Eurasian winter surface air temperature well,especially the latter,usually can/cannot simulate the WACE pattern well.This mainly results from the different abilities of the models to simulate the range and intensity of the warm anomaly in the Barents Sea-Kara seas(BKS)region.Further analysis shows that a good performance of the models in the BKS area is usually related to their ability to simulate location and persistence of Ural blocking(UB),which can transport heat to the BKS region,causing the warm Arctic,and strengthen the westerly trough downstream,cooling central Eurasia.Therefore,simulation of UB is key and significantly affects the model’s performance in simulating the WACE.展开更多
Based on Reanalysis datasets from National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) and summer rainfall datasets from China National Climate Center (NCC), by using tren...Based on Reanalysis datasets from National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) and summer rainfall datasets from China National Climate Center (NCC), by using trend analysis and composite analysis methods, the relationship between the reduction of summer precipitation in North China and northern hemispheric circulation changes was investigated. The results show that summer rainfall in North China had a significant decreasing tendency, especially true since 1965 in which an abrupt change occurred. The northern hemisphere atmospheric circulation at 500 hPa had a remarkable change after 1965, from outstanding meridional circulation to outstanding zonal circulation, leading to upper trough activity to decrease, resulting in the rainfall weather processes caused by upward motion behind trough significantly to reduce. At 500 hPa in Mongolian region, air temperature decreased, resulting in lower troposphere pressure to increase, leading to low pressure activity significantly to decrease and rainfall weather processes influencing North China to reduce. At the same time, the decreased air temperature in 500 hPa would caused the upper troposphere geopotential height to reduce, resulting in high–altitude jet southerly location, the East Asian summer monsoon to weaken, then it was difficult for water vapor transport to cross the Yangtze River valley and reach the North China region, with a southerly summer monsoon rainfall zone. The summer precipitation reduction in North China had a good correlation with the northern hemispheric circulation changes.展开更多
Using the snow cover fi'action (SNC) output from eight WCRP CMIP3 climate models under SRES A2, A1B, and B1 scenarios, the future trend of SNC over East Asia is analyzed. Results show that SNC is likely to decrease...Using the snow cover fi'action (SNC) output from eight WCRP CMIP3 climate models under SRES A2, A1B, and B1 scenarios, the future trend of SNC over East Asia is analyzed. Results show that SNC is likely to decrease in East Asia, with the fastest decrease in spring, then winter and autumn, and the slowest in summer, In spring and winter the SNC decreases faster in the Qinghai-Xizang Plateau than in northern East Asia, while in autumn there is little difference between them. Among the various scenarios, SRES A2 has the largest decrease trend, then A1B, and B1 has the smallest trend. The decrease in SNC is mainly caused by the changes in surface air temperature and snowfall, which contribute differently to the SNC trends in different regions and seasons.展开更多
We use 71-yr(1948–2018) reanalysis data to investigate the interdecadal variation in the atmospheric heat source(Q1) over the Tibetan Plateau and surrounding Asian monsoon region(AMTP) and its effect on the Northern ...We use 71-yr(1948–2018) reanalysis data to investigate the interdecadal variation in the atmospheric heat source(Q1) over the Tibetan Plateau and surrounding Asian monsoon region(AMTP) and its effect on the Northern Hemisphere summer circulation. The large-scale circulation driven by Q1 over the AMTP is characterized by a center of convergent(divergent) or low(high) potential wind function in the lower(upper) troposphere. Q1 over the AMTP shows a clear interdecadal variation(with positive–negative–positive phases) and these three phases correspond to the time periods 1948–1972, 1973–2005, and 2006–2018, respectively. The thermal circulation has a corresponding interdecadal variation as a response to the interdecadal variation in Q1. An enhanced Q1 leads to an increase in the conversion of the total potential energy to non-divergent wind kinetic energy via the divergent wind velocity. The maximum conversion occurs in the tropopause. The primary thermal forcing for Q1 is produced by the intense, large volume precipitation of the summer monsoon. This induces a response in the large-scale circulation, leading to largescale divergence patterns. The synergistic effects of Pacific Decadal Oscillation(PDO) and North Atlantic Multidecadal Oscillation(AMO) influence Q1 over the AMTP, which is ultimately responsible for the modulation of variations in the global divergent circulation. The global divergent circulation in summer is therefore essentially a direct thermodynamic circulation driven by the strong Q1 over the AMTP.展开更多
1.Introduction As one of the most densely populated regions in the world,East Asia suffers significant socioeconomic impacts from extreme events such as heatwaves,floods,and tropical cyclones.For instance,in July 2021...1.Introduction As one of the most densely populated regions in the world,East Asia suffers significant socioeconomic impacts from extreme events such as heatwaves,floods,and tropical cyclones.For instance,in July 2021,Henan province was struck by a record-breaking rainstorm,with Zhengzhou experiencing unusual precipitation intensities reaching 201.9 mm per hour.展开更多
In 2013,China issued the"Action Plan for the Prevention and Control of Air Pollution"("Ten Statements of Atmosphere")and implemented a series of pollution reduction measures from 2013 to 2017.In ke...In 2013,China issued the"Action Plan for the Prevention and Control of Air Pollution"("Ten Statements of Atmosphere")and implemented a series of pollution reduction measures from 2013 to 2017.In key regions of China,the mass concentrations of particulate matter with aerodynamic equivalent diameters less than 2.5μm(PM2.5)have dropped significantly.However,the contributions of meteorological changes to PM2.5 reduction are largely uncertain,which has attracted particular concern from the government and the public.Here,we investigated the impact of large-scale and boundary layer(BL)meteorological conditions on aerosol pollution and estimated the contributions of meteorological changes to PM2.5 reduction based on in-depth analysis and diagnosis of various observed meteorological elements and an integrated pollution-linked meteorological index(PLAM,which is approximately and linearly related to PM mass concentration).In this study,we found that the meteorological conditions worsened in 2014 and 2015 and improved in 2016 and 2017 relative to those in 2013 in key regions in China.In 2017 relative to 2013,only^5%(approximately 13%of the total PM2.5 decline)of the 39.6%reduction in PM2.5 mass concentrations can be attributed to meteorological changes in the Beijing-Tianjin-Hebei(BTH)region,and only^7%(approximately 20%of the total PM2.5 decline)of the 34.3%reduction can be attributable to meteorological changes in the Yangtze River Delta(YRD)region.Overall,the PM2.5 reduction due to meteorological improvement is much lower than the observed PM2.5 reduction in these areas,which indicates that emission reduction during the five-year implementation of the"Ten Statements of Atmosphere"is the dominant factor in the improvement in air quality.The changes in meteorology and climate are conducive to PM2.5 reduction but do not dominate the substantial improvement in air quality.Similar to the above regions,in the Pearl River Delta(PRD)region,the impact of meteorological changes on the annual averaged PM2.5 concentration from 2013 to2017 was relatively weak,and the PM2.5 reduction was mainly due to emission reductions.During winter 2017(January,February,and December of this year),the meteorological conditions improved-20%in the BTH region(observed total PM2.5reduction:40.2%)and-30%in the YRD region(observed total PM2.5 reduction:38.2%)relative to those in 2013,showing the meteorological factors played more important role in the decrease of PM2.5 in winter of these years in the two regions,respectively.The meteorological conditions in winter 2016 were 14%better than those in winter 2017,but the PM2.5 reduction in winter 2016 was still less than that in winter 2017,reinforcing the significant contributions of the increasing efforts to reduce PM2.5 emissions in 2017.The substantial progress of strict emission measures was also confirmed by a comparison of several persistent heavy aerosol pollution episodes(HPEs)with similar meteorological conditions.It is found that the decrease of PM2.5mass caused by emission reduction increases year by year,especially the decrease of PM2.5 concentration in 2016 and 2017.In China,HPEs mainly occur in winter,when meteorological conditions are approximately 40-100%worse than in other seasons.This worsening is partly due to the harbor effect of high topography,including downdrafts and the weak wind zone,and partly due to the increasingly stable regional BL structure caused by climate warming.For the formation of HPEs,it occurred under regional stagnant and stable conditions associated with upper-level circulation patterns,including the zonal westerly winds type and high-pressure ridges.After pollution formation,PM2.5 with mass accumulated to a certain degree can further worsen the BL meteorological conditions.The feedback effect associated with worsening conditions dominates PM2.5 mass explosive growth.In the context of high air pollutant emissions in China,unfavorable meteorological conditions are the necessary external conditions for the formation and accumulation of HPEs.Therefore,reducing aerosol pollution significantly during the earlier transport stage is critical in reducing persistent HPEs.Currently,even under favorable meteorological conditions,allowing emissions without restriction is also not advisable because aerosol pollution allowed to accumulate to a certain extent will significantly worsen the BL meteorological conditions and close the"meteorological channels"available for pollution dispersion.展开更多
基金the Guangdong Major Project of Basic and Applied Basic Research(Grant No.2020B0301030004)the National Natural Science Foundation of China(Grant No.42175056)+3 种基金the Natural Science Foundation of Shanghai(Grant No.21ZR1457600)Review and Summary Project of China Meteorological Administration(Grant No.FPZJ2023-044)the China Meteorological Administration Innovation and Development Project(Grant No.CXFZ2022J009)the Key Innovation Team of Climate Prediction of the China Meteorological Administration(Grant No.CMA2023ZD03).
文摘In the summer of 2022,China(especially the Yangtze River Valley,YRV)suffered its strongest heatwave(HW)event since 1961.In this study,we examined the influences of multiscale variabilities on the 2022 extreme HW in the lower reaches of the YRV,focusing on the city of Shanghai.We found that about 1/3 of the 2022 HW days in Shanghai can be attributed to the long-term warming trend of global warming.During mid-summer of 2022,an enhanced western Pacific subtropical high(WPSH)and anomalous double blockings over the Ural Mountains and Sea of Okhotsk,respectively,were associated with the persistently anomalous high pressure over the YRV,leading to the extreme HW.The Pacific Decadal Oscillation played a major role in the anomalous blocking pattern associated with the HW at the decadal time scale.Also,the positive phase of the Atlantic Multidecadal Oscillation may have contributed to regulating the formation of the double-blocking pattern.Anomalous warming of both the warm pool of the western Pacific and tropical North Atlantic at the interannual time scale may also have favored the persistency of the double blocking and the anomalously strong WPSH.At the subseasonal time scale,the anomalously frequent phases 2-5 of the canonical northward propagating variability of boreal summer intraseasonal oscillation associated with the anomalous propagation of a weak Madden-Julian Oscillation suppressed the convection over the YRV and also contributed to the HW.Therefore,the 2022 extreme HW originated from multiscale forcing including both the climate warming trend and air-sea interaction at multiple time scales.
基金This work was jointly supported by National Key R&D Program of China(2018YFC1505806)Guangdong Major Project of Basic and Applied Basic Research(2020B0301030004)+1 种基金National Science Foundation of China(41875100)the China Meteorological Administration Innovation and Development Project(CXFZ2021Z033),and China Three Gorges Corporation(Grant No.0704181).
文摘The record-breaking mei-yu in the Yangtze-Huaihe River valley(YHRV)in 2020 was characterized by an early onset,a delayed retreat,a long duration,a wide meridional rainbelt,abundant precipitation,and frequent heavy rainstorm processes.It is noted that the East Asian monsoon circulation system presented a significant quasi-biweekly oscillation(QBWO)during the mei-yu season of 2020 that was associated with the onset and retreat of mei-yu,a northward shift and stagnation of the rainbelt,and the occurrence and persistence of heavy rainstorm processes.Correspondingly,during the mei-yu season,the monsoon circulation subsystems,including the western Pacific subtropical high(WPSH),the upper-level East Asian westerly jet,and the low-level southwesterly jet,experienced periodic oscillations linked with the QBWO.Most notably,the repeated establishment of a large southerly center,with relatively stable latitude,led to moisture convergence and ascent which was observed to develop repeatedly.This was accompanied by a long-term duration of the mei-yu rainfall in the YHRV and frequent occurrences of rainstorm processes.Moreover,two blocking highs were present in the middle to high latitudes over Eurasia,and a trough along the East Asian coast was also active,which allowed cold air intrusions to move southward through the northwestern and/or northeastern paths.The cold air frequently merged with the warm and moist air from the low latitudes resulting in low-level convergence over the YHRV.The persistent warming in the tropical Indian Ocean is found to be an important external contributor to an EAP/PJ-like teleconnection pattern over East Asia along with an intensified and southerly displaced WPSH,which was observed to be favorable for excessive rainfall over YHRV.
基金jointly supported by the Major Consulting Projects of the Chinese Academy of Engineering(“Study on Strategies and Measures for the Prevention and Control of Urban Flood and Waterlogging Disasters in China”)the Public Welfare Industry(Meteorological)Research Projects(Grant Nos.GYHY201306065,GYHY201406001)a research project of the Shanghai Meteorological Bureau(Grant No.YJ201604)
文摘Using the hourly precipitation records of meteorological stations in Shanghai, covering a period of almost a century (1916-2014), the long-term variation of extreme heavy precipitation in Shanghai on multiple spatial and temporal scales is analyzed, and the effects of urbanization on hourly rainstorms studied. Results show that: (1) Over the last century, extreme hourly precipitation events enhanced significantly. During the recent urbanization period from 1981 to 2014, the frequency of heavy precipitation increased significantly, with a distinct localized and abrupt characteristic. (2) The spatial distribution of long-term trends for the occurrence frequency and total precipitation intensity of hourly heavy precipitation in Shanghai shows a distinct urban rain-island feature; namely, heavy precipitation was increasingly focused in urban and suburban areas. Attribution analysis shows that urbanization in Shanghai contributed greatly to the increase in both frequency and intensity of heavy rainfall events in the city, thus leading to an increasing total precipitation amount of heavy rainfall events. In addition, the diurnal variation of rainfall intensity also shows distinctive urban-rural differences, especially during late afternoon and early nighttime in the city area. (3) Regional warming, with subsequent enhancement of water vapor content, convergence of moisture flux and atmospheric instability, provided favorable physical backgrounds for the formation of extreme precipitation. This accounts for the consistent increase in hourly heavy precipitation over the whole Shanghai area during recent times.
文摘This paper presents a concise summary of recent studies on the long-term variations of haze in NorthChina and on the environmental and dynamic conditions for severe persistent haze events. Resultsindicate that haze days have an obviously rising trend over the past 50 years in North China. Theoccurrence frequency of persistent haze events has a similar rising trend due to the continuous riseof winter temperatures, decrease of surface wind speeds, and aggravation of atmospheric stability. InNorth China, when severe persistent haze events occur, anomalous southwesterly winds prevail in thelower troposphere, providing sufficient moisture for the formation of haze. Moreover, North China ismainly controlled by a deep downdraft in the mid-lower troposphere, which contributes to reducing thethickness of the planetary boundary layer, obviously reducing the atmospheric capacity for pollutants.This atmospheric circulation and sinking motion provide favorable conditions for the formation andmaintenance of haze in North China.
基金supported by the national key R&D Program of China(Grant No 2018YFC1505603)the Key Research Program of Frontier Sciences,CAS(Grant No.ZDBS-LY-DQC010)the National Natural Science Foundation of China(Grant Nos.41876012,41861144015).
文摘In the first half of winter 2020/21,China has experienced an extremely cold period across both northern and southern regions,with record-breaking low temperatures set in many stations of China.Meanwhile,a moderate La Niña event which exceeded both oceanic and atmospheric thresholds began in August 2020 and in a few months developed into its mature phase,just prior to the 2020/21 winter.In this report,the mid−high-latitude large-scale atmospheric circulation anomalies in the Northern Hemisphere,which were forced by the negative phase of Arctic Oscillation,a strengthened Siberian High,an intensified Ural High and a deepened East Asian Trough,are considered to be the direct reason for the frequent cold surges in winter 2020/21.At the same time,the synergistic effect of the warm Arctic and the cold tropical Pacific(La Niña)provided an indispensable background,at a hemispheric scale,to intensify the atmospheric circulation anomalies in middle-to-high latitudes.In the end,a most recent La Niña prediction is provided and the on-coming evolution of climate is discussed for the remaining part of the 2020/21 winter for the purpose of future decision-making and early warning.
基金This work was jointly supported by the National Key Research and Development Plan“Major Natural Disaster Monitoring,Warning and Prevention”(2017YFC1502301)the Natural Science Foundation of Shanghai(21ZR1457600)+1 种基金the National Natural Science Foundation of China under Grant No.41790471 and 41775047China Three Gorges Corporation(Grant No.0704181).
文摘The middle and lower reaches of the Yangtze River in eastern China during summer 2020 suffered the strongest mei-yu since 1961.In this work,we comprehensively analyzed the mechanism of the extreme mei-yu season in 2020,with focuses on the combined effects of the Madden-Julian Oscillation(MJO)and the cooperative influence of the Pacific and Indian Oceans in 2020 and from a historical perspective.The prediction and predictability of the extreme mei-yu are further investigated by assessing the performances of the climate model operational predictions and simulations.It is noted that persistent MJO phases 1−2 during June−July 2020 played a crucial role for the extreme mei-yu by strengthening the western Pacific subtropical high.Both the development of La Niña conditions and sea surface temperature(SST)warming in the tropical Indian Ocean exerted important influences on the long-lived MJO phases 1−2 by slowing down the eastward propagation of the MJO and activating convection related to the MJO over the tropical Indian Ocean.The spatial distribution of the 2020 mei-yu can be qualitatively captured in model real-time forecasts with a one-month lead.This can be attributed to the contributions of both the tropical Indian Ocean warming and La Niña development.Nevertheless,the mei-yu rainfall amounts are seriously underestimated.Model simulations forced with observed SST suggest that internal processes of the atmosphere play a more important role than boundary forcing(e.g.,SST)in the variability of mei-yu anomaly,implying a challenge in quantitatively predicting an extreme mei-yu season,like the one in 2020.
基金jointly supported by the National Natural Science Foundation of China (Grant Nos.41790471, 41991284, and 41875104)the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No.XDA20100304).
文摘An unprecedented cold wave intruded into East Asia in early January 2021 and led to record-breaking or historical extreme low temperatures over vast regions.This study shows that a major stratospheric sudden warming(SSW)event at the beginning of January 2021 exerted an important influence on this cold wave.The major SSW event occurred on 2 January 2021 and subsequently led to the displacement of the stratospheric polar vortex to the East Asian side.Moreover,the SSW event induced the stratospheric warming signal to propagate downward to the mid-to-lower troposphere,which not only enhanced the blocking in the Urals-Siberia region and the negative phase of the Arctic Oscillation,but also shifted the tropospheric polar vortex off the pole.The displaced tropospheric polar vortex,Ural blocking,and another downstream blocking ridge over western North America formed a distinct inverted omega-shaped circulation pattern(IOCP)in the East Asia-North Pacific sector.This IOCP was the most direct and impactful atmospheric pattern causing the cold wave in East Asia.The IOCP triggered a meridional cell with an upward branch in East Asia and a downward branch in Siberia.The meridional cell intensified the Siberian high and low-level northerly winds,which also favored the invasion of the cold wave into East Asia.Hence,the SSW event and tropospheric circulations such as the IOCP,negative phase of Arctic Oscillation,Ural blocking,enhanced Siberian high,and eastward propagation of Rossby wave eventually induced the outbreak of an unprecedented cold wave in East Asia in early January 2021.
基金jointly sponsored by the National Basic Research Program of China(973 Program)(Grant No.2013CB430202)the National Natural Science Foundation of China(Grant No.41401056)+1 种基金the China Meteorological Administration Special Public Welfare Research Fund(Grant No.GYHY201406001)the Research Innovation Program for College Graduates of Jiangsu Province(Grant No.KYLX15 0858)
文摘In this study, regional persistent haze events(RPHEs) in the Beijing–Tianjin–Hebei(BTH) region were identified based on the Objective Identification Technique for Regional Extreme Events for the period 1980–2013. The formation mechanisms of the severe RPHEs were investigated with focus on the atmospheric circulation and dynamic mechanisms. Results indicated that:(1) 49 RPHEs occurred during the past 34 years.(2) The severe RPHEs could be categorized into two types according to the large-scale circulation, i.e. the zonal westerly airflow(ZWA) type and the high-pressure ridge(HPR) type. When the ZWA-type RPHEs occurred, the BTH region was controlled by near zonal westerly airflow in the mid–upper troposphere.Southwesterly winds prevailed in the lower troposphere, and near-surface wind speeds were only 1–2 ms^-1. Warm and humid air originating from the northwestern Pacific was transported into the region, where the relative humidity was 70% to 80%, creating favorable moisture conditions. When the HPR-type RPHEs appeared, northwesterly airflow in the mid–upper troposphere controlled the region. Westerly winds prevailed in the lower troposphere and the moisture conditions were relatively weak.(3) Descending motion in the mid-lower troposphere caused by the above two circulation types provided a crucial dynamic mechanism for the formation of the two types of RPHEs. The descending motion contributed to a reduction in the height of the planetary boundary layer(PBL), which generated an inversion in the lower troposphere. This inversion trapped the abundant pollution and moisture in the lower PBL, leading to high concentrations of pollutants.
基金supported by the National Basic Research Program of China(Grant Nos.2013CB430203 and 2012CB417205)the National Key Research and Development Program of China(during the 13th Five-year Plan)(Grant No.2016YFA0601501)the China Meteorological Special Programs(Grant No.GYHY201306033)
文摘The Afro-Asian summer monsoon is a zonally planetary-scale system, with a large-scale rainbelt covering Africa, South Asia and East Asia on interdecadal timescales both in the past century(1901-2014) and during the last three decades(1979-2014). A recent abrupt change of precipitation occurred in the late 1990 s. Since then, the entire rainbelt of the Afro-Asia monsoon system has advanced northwards in a coordinated way. Consistent increases in precipitation over the Huanghe-Huaihe River valley and the Sahel are associated with the teleconnection pattern excited by the warm phase of the Atlantic Multidecadal Oscillation(AMO). A teleconnection wave train, with alternating cyclones/anticyclones, is detected in the upper troposphere. Along the teleconnection path, the configuration of circulation anomalies in North Africa is characterized by coupling of the upper-level anticyclone(divergence) with low-level thermal low pressure(convergence), facilitating the initiation and development of ascending motions in the Sahel. Similarly, in East Asia, a coupled circulation pattern also excites ascending motion in the Huanghe-Huaihe River valley. The synchronous increase in precipitation over the Sahel and Huanghe-Huaihe River valley can be attributed to the co-occurrences and in-phase changes of ascending motion. On the other hand, the warm phase of the AMO results in significant warming in the upper troposphere in North Africa and the northern part of East Asia. Such warming contributes to intensification of the tropical easterly jet through increasing the meridional pressure gradient both at the entrance region(East Asia) and the exit region(Africa). Accordingly, precipitation over the Sahel and Huanghe-Huaihe River valley intensifies, owing to ageostrophic secondary cells. The results of this study provide evidence for a consistent and holistic interdecadal change in the Afro-Asian summer monsoon.
基金supported by the Guangdong Major Project of Basic and Applied Basic Research(Grant No.2020B0301030004)the National Natural Science Foundation of China(Grant Nos.42075015,41775060,41875114)+1 种基金the Science and Technology Commission of Shanghai MunicipalityChina(Grant No.20dz1200700)。
文摘Although it is well known that the tropical easterly jet(TEJ)has a significant impact on summer weather and climate over India and Africa,whether the TEJ exerts an important impact on tropical cyclone(TC)activity over the western North Pacific(WNP)remains unknown.In this study,we examined the impact of the TEJ on the interannual variability of TC genesis frequency over the WNP in the TC season(June-September)during 1980-2020.The results show a significant positive correlation between TC genesis frequency over the WNP and the jet intensity in the entrance region of the TEJ over the tropical western Pacific(in brief WP_TEJ),with a correlation coefficient as high as 0.66.The intensified WP_TEJ results in strong ageostrophic northerly winds in the entrance region and thus upper-level divergence to the north of the jet axis over the main TC genesis region in the WNP.This would lead to an increase in upward motion in the troposphere with enhanced low-level convergence,which are the most important factors to the increases in low-level vorticity,mid-level humidity and low-level eddy kinetic energy,and the decreases in sea level pressure and vertical wind shear in the region.All these changes are favorable for TC genesis over the WNP and vice versa.Further analyses indicate that the interannual variability of the WP_TEJ intensity is likely to be linked to the local diabatic heating over the Indian Ocean-western Pacific and the central Pacific El Ni?o-Southern Oscillation.
基金This study was jointly supported by the National Key Research and Development Program of China(2017YF0603703 and 2017YF0605004)the Atmospheric Pollution Control of the Prime Minister Fund of China(DQGG0104).
文摘This work analyzes and discusses the influence of human activities on the meteorological conditions related to winter haze events in Beijing,Tianjin,and Hebei(i.e.,the Jing-Jin-Ji region)during 1961-2016,using the results of two numerical simulation experiments based on the Community Atmosphere Model version 5.1.1(http://www.cesm.ucar.edu/models/cesm1.0/cam/docs/ug5_1_1/book1.html)used in the international Climate Variability and Predictability Programme(CLIVAR)Climate of the 20th Century Detection and Attribution Project(C20C+D&A).The results show that,under the influence of human activities,the changes in dynamical and thermal meteorological conditions related to winter haze events in the Jing–Jin–Ji region are conducive to the formation and accumulation of haze,and prevent the diffusion of pollutants.The dynamical conditions mainly include the obvious weakening of the East Asian winter monsoon(EAWM)and the enhancement of the near-surface anomalous southerly wind.The thermal conditions include the obvious increase in surface temperature,and the enhancement of water vapor transport and near-surface inversion.The relative contribution of dynamical and thermal conditions to the variation of haze days in the Jing-Jin-Ji region is analyzed using statistical methods.The results show that the contribution of human activities to the increase of haze days in the Jing-Jin-Ji region is greater than that of natural forcing for the study period.To be specific,the dynamical meteorological factors contribute more to the haze days than the thermal meteorological factors.The contribution of thermal meteorological factors is basically the same in both scenarios.
基金The datasets were provided by the Mesoscale Heavy Rainfall Observing System(MHROS)of the Wuhan Institute of Heave Rain(IHR),China Meteorological AdministrationThe IMFRE field campaign is primarily supported by the National Natural Science Foundation of China(Grant Nos.41620104009 and 91637211).
文摘The mei-yu season,typically occurring from mid-June to mid-July,on average,contributes to 32%of the annual precipitation over the Yangtze-Huai River Valley(YHRV)and represents one of the three heavy-rainfall periods in China.Here,we briefly review the large-scale background,synoptic pattern,moisture transport,and cloud and precipitation characteristics of the mei-yu frontal systems in the context of the ongoing Integrative Monsoon Frontal Rainfall Experiment(IMFRE)field campaign.Phase one of the campaign,IMFRE-I,was conducted from 10 June to 10 July 2018 in the middle reaches of the YHRV.Led by the Wuhan Institute of Heavy Rain(IHR)with primary support from the National Natural Science Foundation of China,IMFRE-I maximizes the use of our observational capacity enabled by a suite of ground-based and remote sensing instruments,most notably the IHR Mesoscale Heavy Rainfall Observing System(MHROS),including different wavelengths of radars,microwave radiometers,and disdrometers.The KA350(Shanxi King-Air)aircraft participating in the campaign is equipped with Ka-band cloud radar and different probes.The comprehensive datasets from both the MHROS and aircraft instruments are combined with available satellite observations and model simulations to answer the three scientific questions of IMFRE-I.Some highlights from a previously published special issue are included in this review,and we also briefly introduce the IMFRE-II field campaign,conducted during June-July 2020,where the focus was on the spatiotemporal evolutions of the mei-yu frontal systems over the middle and lower reaches of the YHRV.
基金supported by the National Science & Technology Pillar Program during the Eleventh Five-Year Plan Period of China(2007BAC03A01)the Climatic Change Project of China Meteorological Administration(CCCSF2008-10)
文摘Temperature change plays a crucial role in global change sciences. In the past several decades, comprehensive find- ings have been achieved on temperature change in China for the past 100 years. Several time series have been created to illustrate the averaged surface air temperature for the country. The correlations of these series range from 0.73 to 0.97. It is also achieved in better data quality, wider spatial data coverage, improved homogeneity of time series, and enhanced reliability of findings. The results show an annual mean temperature increase by 0.78±0.27℃ per 100 years in China for the period 1906-2005. After prolonging the period till 2007, it is found that 2007 is rated as the warmest year in the past 100 years. Although all the series, except one, reflect temperature changes in the eastern part of China before the 1930s, they represent the general temperature change in most parts of the country after the 1930s.
文摘1. Introduction In the past 100 years, earth's changing climate has resulted in widespread and significant impacts, with the strongest and most comprehensive evidence of climate change being seen in natural systems. Some impacts on human systems have also been observed, including impacts on water resources and hydrological systems, species shifting and migration, and negative impacts on crop yields. The most noticeable impacts are believed to result from extreme climate-related events such as those that have recently occurred, including heat waves, droughts, floods, tropical cyclones, and wildfires.
基金the National Natural Science Foundation of China(Grant Nos.41790471,42075040,and U1902209)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA20100304)the National Key Research and Development Program of China(2018YFA0606203,2019YFC1510400).
文摘An enhanced Warm Arctic-Cold Eurasia(WACE)pattern has been a notable feature in recent winters of the Northern Hemisphere.However,divergent results between model and observational studies of the WACE still remain.This study evaluates the performance of 39 climate models participating in the Coupled Model Intercomparison Project Phase 6(CMIP6)in simulating the WACE pattern in winter of 1980-2014 and explores the key factors causing the differences in the simulation capability among the models.The results show that the multimodel ensemble(MME)can better simulate the spatial distribution of the WACE pattern than most single models.Models that can/cannot simulate both the climatology and the standard deviation of the Eurasian winter surface air temperature well,especially the latter,usually can/cannot simulate the WACE pattern well.This mainly results from the different abilities of the models to simulate the range and intensity of the warm anomaly in the Barents Sea-Kara seas(BKS)region.Further analysis shows that a good performance of the models in the BKS area is usually related to their ability to simulate location and persistence of Ural blocking(UB),which can transport heat to the BKS region,causing the warm Arctic,and strengthen the westerly trough downstream,cooling central Eurasia.Therefore,simulation of UB is key and significantly affects the model’s performance in simulating the WACE.
文摘Based on Reanalysis datasets from National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) and summer rainfall datasets from China National Climate Center (NCC), by using trend analysis and composite analysis methods, the relationship between the reduction of summer precipitation in North China and northern hemispheric circulation changes was investigated. The results show that summer rainfall in North China had a significant decreasing tendency, especially true since 1965 in which an abrupt change occurred. The northern hemisphere atmospheric circulation at 500 hPa had a remarkable change after 1965, from outstanding meridional circulation to outstanding zonal circulation, leading to upper trough activity to decrease, resulting in the rainfall weather processes caused by upward motion behind trough significantly to reduce. At 500 hPa in Mongolian region, air temperature decreased, resulting in lower troposphere pressure to increase, leading to low pressure activity significantly to decrease and rainfall weather processes influencing North China to reduce. At the same time, the decreased air temperature in 500 hPa would caused the upper troposphere geopotential height to reduce, resulting in high–altitude jet southerly location, the East Asian summer monsoon to weaken, then it was difficult for water vapor transport to cross the Yangtze River valley and reach the North China region, with a southerly summer monsoon rainfall zone. The summer precipitation reduction in North China had a good correlation with the northern hemispheric circulation changes.
基金supported by the National Key Science and Technology Program of Ministry of Science and Technology of China (Grant No. 2007BAC03A01)
文摘Using the snow cover fi'action (SNC) output from eight WCRP CMIP3 climate models under SRES A2, A1B, and B1 scenarios, the future trend of SNC over East Asia is analyzed. Results show that SNC is likely to decrease in East Asia, with the fastest decrease in spring, then winter and autumn, and the slowest in summer, In spring and winter the SNC decreases faster in the Qinghai-Xizang Plateau than in northern East Asia, while in autumn there is little difference between them. Among the various scenarios, SRES A2 has the largest decrease trend, then A1B, and B1 has the smallest trend. The decrease in SNC is mainly caused by the changes in surface air temperature and snowfall, which contribute differently to the SNC trends in different regions and seasons.
基金the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA20100304)Second Tibetan Plateau Scientific Expedition and Research Program (2019QZKK0208)+1 种基金National Natural Science Foundation of China (41790471)National Key Scientific Research Plan of China (2016YFA0602200)。
文摘We use 71-yr(1948–2018) reanalysis data to investigate the interdecadal variation in the atmospheric heat source(Q1) over the Tibetan Plateau and surrounding Asian monsoon region(AMTP) and its effect on the Northern Hemisphere summer circulation. The large-scale circulation driven by Q1 over the AMTP is characterized by a center of convergent(divergent) or low(high) potential wind function in the lower(upper) troposphere. Q1 over the AMTP shows a clear interdecadal variation(with positive–negative–positive phases) and these three phases correspond to the time periods 1948–1972, 1973–2005, and 2006–2018, respectively. The thermal circulation has a corresponding interdecadal variation as a response to the interdecadal variation in Q1. An enhanced Q1 leads to an increase in the conversion of the total potential energy to non-divergent wind kinetic energy via the divergent wind velocity. The maximum conversion occurs in the tropopause. The primary thermal forcing for Q1 is produced by the intense, large volume precipitation of the summer monsoon. This induces a response in the large-scale circulation, leading to largescale divergence patterns. The synergistic effects of Pacific Decadal Oscillation(PDO) and North Atlantic Multidecadal Oscillation(AMO) influence Q1 over the AMTP, which is ultimately responsible for the modulation of variations in the global divergent circulation. The global divergent circulation in summer is therefore essentially a direct thermodynamic circulation driven by the strong Q1 over the AMTP.
文摘1.Introduction As one of the most densely populated regions in the world,East Asia suffers significant socioeconomic impacts from extreme events such as heatwaves,floods,and tropical cyclones.For instance,in July 2021,Henan province was struck by a record-breaking rainstorm,with Zhengzhou experiencing unusual precipitation intensities reaching 201.9 mm per hour.
基金supported by the Atmospheric Pollution Control of the Prime Minister Fund (Grant No. DQGG0104)the National Key Project of MOST (Grant No. 2016YFC0203306)
文摘In 2013,China issued the"Action Plan for the Prevention and Control of Air Pollution"("Ten Statements of Atmosphere")and implemented a series of pollution reduction measures from 2013 to 2017.In key regions of China,the mass concentrations of particulate matter with aerodynamic equivalent diameters less than 2.5μm(PM2.5)have dropped significantly.However,the contributions of meteorological changes to PM2.5 reduction are largely uncertain,which has attracted particular concern from the government and the public.Here,we investigated the impact of large-scale and boundary layer(BL)meteorological conditions on aerosol pollution and estimated the contributions of meteorological changes to PM2.5 reduction based on in-depth analysis and diagnosis of various observed meteorological elements and an integrated pollution-linked meteorological index(PLAM,which is approximately and linearly related to PM mass concentration).In this study,we found that the meteorological conditions worsened in 2014 and 2015 and improved in 2016 and 2017 relative to those in 2013 in key regions in China.In 2017 relative to 2013,only^5%(approximately 13%of the total PM2.5 decline)of the 39.6%reduction in PM2.5 mass concentrations can be attributed to meteorological changes in the Beijing-Tianjin-Hebei(BTH)region,and only^7%(approximately 20%of the total PM2.5 decline)of the 34.3%reduction can be attributable to meteorological changes in the Yangtze River Delta(YRD)region.Overall,the PM2.5 reduction due to meteorological improvement is much lower than the observed PM2.5 reduction in these areas,which indicates that emission reduction during the five-year implementation of the"Ten Statements of Atmosphere"is the dominant factor in the improvement in air quality.The changes in meteorology and climate are conducive to PM2.5 reduction but do not dominate the substantial improvement in air quality.Similar to the above regions,in the Pearl River Delta(PRD)region,the impact of meteorological changes on the annual averaged PM2.5 concentration from 2013 to2017 was relatively weak,and the PM2.5 reduction was mainly due to emission reductions.During winter 2017(January,February,and December of this year),the meteorological conditions improved-20%in the BTH region(observed total PM2.5reduction:40.2%)and-30%in the YRD region(observed total PM2.5 reduction:38.2%)relative to those in 2013,showing the meteorological factors played more important role in the decrease of PM2.5 in winter of these years in the two regions,respectively.The meteorological conditions in winter 2016 were 14%better than those in winter 2017,but the PM2.5 reduction in winter 2016 was still less than that in winter 2017,reinforcing the significant contributions of the increasing efforts to reduce PM2.5 emissions in 2017.The substantial progress of strict emission measures was also confirmed by a comparison of several persistent heavy aerosol pollution episodes(HPEs)with similar meteorological conditions.It is found that the decrease of PM2.5mass caused by emission reduction increases year by year,especially the decrease of PM2.5 concentration in 2016 and 2017.In China,HPEs mainly occur in winter,when meteorological conditions are approximately 40-100%worse than in other seasons.This worsening is partly due to the harbor effect of high topography,including downdrafts and the weak wind zone,and partly due to the increasingly stable regional BL structure caused by climate warming.For the formation of HPEs,it occurred under regional stagnant and stable conditions associated with upper-level circulation patterns,including the zonal westerly winds type and high-pressure ridges.After pollution formation,PM2.5 with mass accumulated to a certain degree can further worsen the BL meteorological conditions.The feedback effect associated with worsening conditions dominates PM2.5 mass explosive growth.In the context of high air pollutant emissions in China,unfavorable meteorological conditions are the necessary external conditions for the formation and accumulation of HPEs.Therefore,reducing aerosol pollution significantly during the earlier transport stage is critical in reducing persistent HPEs.Currently,even under favorable meteorological conditions,allowing emissions without restriction is also not advisable because aerosol pollution allowed to accumulate to a certain extent will significantly worsen the BL meteorological conditions and close the"meteorological channels"available for pollution dispersion.