期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Recent advances in non-thermal plasma(NTP)catalysis towards C1 chemistry 被引量:5
1
作者 Huanhao Chen yibing mu +3 位作者 Shanshan Xu Shaojun Xu Christopher Hardacre Xiaolei Fan 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第8期2010-2021,共12页
C1 chemistrymainly involves the catalytic transformation of C1molecules(i.e.,CO,CO2,CH4 and CH3OH),which usually encounters thermodynamic and/or kinetic limitations.To address these limitations,non-thermal plasma(NTP)... C1 chemistrymainly involves the catalytic transformation of C1molecules(i.e.,CO,CO2,CH4 and CH3OH),which usually encounters thermodynamic and/or kinetic limitations.To address these limitations,non-thermal plasma(NTP)activated heterogeneous catalysis offers a number of advantages,such as relatively mild reaction conditions and energy efficiency,in comparison to the conventional thermal catalysis.This review presents the state-of-the-art for the application of NTP-catalysis towards C1 chemistry,including the CO2 hydrogenation,reforming of CH4 and CH3OH,and water-gas shift(WGS)reaction.In the hybrid NTP-catalyst system,the plasma-catalyst interactions aremultifaceted.Accordingly,this reviewalso includes a brief discussion on the fundamental research into themechanisms of NTP activated catalytic C1 chemistry,such as the advanced characterisation methods(e.g.,in situ diffuse reflectance infrared Fourier transform spectroscopy,DRIFTS),temperatureprogrammed plasma surface reaction(TPPSR),kinetic studies.Finally,prospects for the future research on the development of tailor-made catalysts for NTP-catalysis systems(which will enable the further understanding of its mechanism)and the translation of the hybrid technique to practical applications of catalytic C1 chemistry are discussed. 展开更多
关键词 Non-thermal plasma(NTP) Heterogeneous catalysis C1 chemistry MECHANISM In situ characterisation
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部