Activating MoS_(2) with atomic metal doping is promising to harvest desirable Pt-matched hydrogen evolution reaction(HER)catalytic performance.Herein,we developed an efficient method to access edgerich lattice-distort...Activating MoS_(2) with atomic metal doping is promising to harvest desirable Pt-matched hydrogen evolution reaction(HER)catalytic performance.Herein,we developed an efficient method to access edgerich lattice-distorted MoS_(2) for highly efficient HER via in-situ sulphuration of atomic Co/Mo species that were well-dispersed in a formamide-derived N-doped carbonaceous(f-NC)substrate.Apart from others,pre-embedding Co/Mo species in f-NC controls the release of metal sources upon annealing in S vapor,grafting the as-made MoS_(2) with merits of short-range crystallinity,distorted lattices,rich defects,and more edges exposed.The content of atomic Co species embedded in MoS_(2) reaches up to 2.85 at.%,and its atomic dispersion has been systematically confirmed by using XRD,HRTEM,XPS,and XAS characterizations.The Co-doped MoS_(2) sample exhibits excellent HER activity,achieving overpotentials of 67 and155 m V at j=10 m A cm^(-2) in 1.0 M KOH and 0.5 M H_(2)SO_(4),respectively.Density functional theory simulations suggest that,compared with free-doping MoS_(2),the edged Co doping is responsible for the significantly improved HER activity.Our method,in addition to providing reliable Pt-matched HER catalysts,may also inspire the general synthesis of edge-rich metal-doped metal chalcogenide for a wide range of energy conversion applications.展开更多
Transition metal fluorides(TMFs)cathode materials have shown extraordinary promises for electrochemical energy storage,but the understanding of their electrochemical reaction mechanisms is still a matter of debate due...Transition metal fluorides(TMFs)cathode materials have shown extraordinary promises for electrochemical energy storage,but the understanding of their electrochemical reaction mechanisms is still a matter of debate due to the complicated and continuous changing in the battery internal environment.Here,we design a novel iron fluoride(FeF_(2))aggregate assembled with cylindrical nanoparticles as cathode material to build FeF_(2) lithium-ion batteries(LIBs)and employ advanced in situ magnetometry to detect their intrinsic electronic structure during cycling in real time.The results show that FeF_(2) cannot be involved in complete conversion reactions when the FeF_(2) LIBs operate between the conventional voltage range of 1.0–4.0 V,and that the corresponding conversion ratio of FeF_(2) can be further estimated.Importantly,we first demonstrate that the spin-polarized surface capacitance exists in the FeF_(2) cathode by monitoring the magnetic responses over various voltage ranges.The research presents an original and insightful method to examine the conversion mechanism of TMFs and significantly provides an important reference for the future artificial design of energy systems based on spinpolarized surface capacitance.展开更多
Design of supportive atomic sites with a controllably adjusted coordinating environment is essential to advancing the reduction of CO_(2) to value-added fuels and chemicals and to achieving carbon neutralization.Herei...Design of supportive atomic sites with a controllably adjusted coordinating environment is essential to advancing the reduction of CO_(2) to value-added fuels and chemicals and to achieving carbon neutralization.Herein,atomic Ni(Zn)sites that are uniquely coordinated with ternary Zn(Ni)/N/O ligands were successfully decorated on formamide-derived porous carbon nanomaterials,possibly forming an atomic structure of Ni(N_(2)O_(1))-Zn(N_(2)O_(1)),as studied by combining X-ray photoelectron spectroscopy and X-ray absorption spectroscopy.With the mediation of additional O coordination,the Ni-Zn dual site induces significantly decreased desorption of molecular CO.The NiZn-NC decorated with rich Ni(N_(2)O_(1))-Zn(N_(2)O_(1))sites remarkably gained>97%CO Faraday efficiency over a wide potential range of -0.8 to -1.1 V(relative to reversible hydrogen electrode).Density functional theory computations suggest that the N/O dual coordination effectively modulates the electronic structure of the Ni-Zn duplex and optimizes the adsorption and conversion properties of CO_(2) and subsequent intermediates.Different from the conventional pathway of using Ni as the active site in the Ni-Zn duplex,it is found that the Ni-neighboring Zn sites in the Ni(N_(2)O_(1))-Zn(N_(2)O_(1))coordination showed much lower energy barriers of the CO_(2) protonation step and the subsequent dehydroxylation step.展开更多
Stretchable energy storage devices,maintaining the capability of steady operation under large mechanical strain,have become increasing more important with the development of stretchable electronic devices.Stretchable ...Stretchable energy storage devices,maintaining the capability of steady operation under large mechanical strain,have become increasing more important with the development of stretchable electronic devices.Stretchable supercapacitors(SSCs),with high power density,modest energy density,and superior mechanical properties are regarded as one of the most promising power supplies to stretchable electronic devices.Conductive polymers,such as polyaniline(PANI),polypyrrole(PPy),polythiophene(PTh)and poly(3,4-ehtylenedioxythiophene)(PEDOT),are among the well-studied electroactive materials for the construction of SSCs because of their high specific theoretical capacity,excellent electrochemical activity,light weight,and high flexibility.Much effort has been devoted to developing stretchable,conductive polymer-based SSCs with different device structures,such as sandwich-type and fiber-shaped type SSCs.This review summarizes the material and structural design for con ductive polymer-based SSCs and discusses the challenge and importa nt di recti ons in this emergi ng field.展开更多
The direct electrochemical synthesis of H_(2)O_(2)from O_(2)is currently the most promising alternative to energyintensive industrial anthraquinone oxidation/reduction methods. However, its widespread use is hampered ...The direct electrochemical synthesis of H_(2)O_(2)from O_(2)is currently the most promising alternative to energyintensive industrial anthraquinone oxidation/reduction methods. However, its widespread use is hampered by the lack of efficient low-cost electrocatalysts. In the current study,oxygenated boron-doped carbon(O-BC) materials were realized via a green synthetic strategy involving polymer dehalogenation and employed as electrode materials for the electrochemical synthesis of H_(2)O_(2)via a 2 e-oxygen reduction.The catalytic activity of the O-BC materials was optimized through systematic variation of the boron source(H_(2)BO_(2))dosage and annealing temperature. Electrochemical measurements revealed that the optimal sample(O-BC-2-650)exhibited a selectivity of 98% for the 2 e-oxygen reduction to H2 O_(2)and an average H_(2)O_(2)production rate of412.8 mmol g_(cat)^(-1) h^(-1)in an H-type alkaline electrolyzer. Density functional theory simulations indicated that the functionalization of active B sites with one oxygen atom provides the lowest Gibbs free energy change(ΔG) of 0.03 e V for the hydrogenation of*O_(2), while functionalization with zero or two O atoms results in much larger ΔG values(0.08 and 0.10 e V,respectively). Thus, this work details a new type of green, lowcost, and metal-free electrocatalyst for H_(2)O_(2)production.展开更多
氧化钼(MoO_(3))是一种具有吸引力的锂离子电池(LIBs)负极材料;然而,其导电性低、锂化后体积膨胀大、锂离子扩散动力学缓慢等特点严重限制了其实际应用.本文中,我们利用高量Mo/N掺杂的碳前驱材料合成了超细的MoO_(3)纳米颗粒(NPs,10–15...氧化钼(MoO_(3))是一种具有吸引力的锂离子电池(LIBs)负极材料;然而,其导电性低、锂化后体积膨胀大、锂离子扩散动力学缓慢等特点严重限制了其实际应用.本文中,我们利用高量Mo/N掺杂的碳前驱材料合成了超细的MoO_(3)纳米颗粒(NPs,10–15 nm),所合成的MoO_(3)NPs被限制在原位生成的N掺杂碳网络结构中.这种设计既促进了快速的电子传导,又缩短了锂离子扩散路径;同时,MoO_(3)表面丰富的氮物种和氧缺陷有助于降低锂离子的吸附能垒,这些共同支持了MoO_(3)NPs在高电流倍率下耐久储锂性能的提升.值得注意的是,所获得的NCMoO_(3)纳米复合材料表现出1362 mA h g^(−1)(0.1 A g^(−1))的较高容量,并在10.0 A g^(−1)时保持394 mA h g^(−1)的可逆容量.全电池测试表明:在大倍率5 C下,LiFePO_(4)//NC-MoO_(3)-400电池仍可以输出81 mA h g^(−1)的比容量.我们的工作有望启发其他嵌入导电碳网络的过渡金属氧化物的设计合成及其在LIBs中的实际应用.展开更多
基金financially supported by the National Natural Science Foundation of China(22071137)。
文摘Activating MoS_(2) with atomic metal doping is promising to harvest desirable Pt-matched hydrogen evolution reaction(HER)catalytic performance.Herein,we developed an efficient method to access edgerich lattice-distorted MoS_(2) for highly efficient HER via in-situ sulphuration of atomic Co/Mo species that were well-dispersed in a formamide-derived N-doped carbonaceous(f-NC)substrate.Apart from others,pre-embedding Co/Mo species in f-NC controls the release of metal sources upon annealing in S vapor,grafting the as-made MoS_(2) with merits of short-range crystallinity,distorted lattices,rich defects,and more edges exposed.The content of atomic Co species embedded in MoS_(2) reaches up to 2.85 at.%,and its atomic dispersion has been systematically confirmed by using XRD,HRTEM,XPS,and XAS characterizations.The Co-doped MoS_(2) sample exhibits excellent HER activity,achieving overpotentials of 67 and155 m V at j=10 m A cm^(-2) in 1.0 M KOH and 0.5 M H_(2)SO_(4),respectively.Density functional theory simulations suggest that,compared with free-doping MoS_(2),the edged Co doping is responsible for the significantly improved HER activity.Our method,in addition to providing reliable Pt-matched HER catalysts,may also inspire the general synthesis of edge-rich metal-doped metal chalcogenide for a wide range of energy conversion applications.
基金National Natural Science Foundation of China,Grant/Award Number:51804173。
文摘Transition metal fluorides(TMFs)cathode materials have shown extraordinary promises for electrochemical energy storage,but the understanding of their electrochemical reaction mechanisms is still a matter of debate due to the complicated and continuous changing in the battery internal environment.Here,we design a novel iron fluoride(FeF_(2))aggregate assembled with cylindrical nanoparticles as cathode material to build FeF_(2) lithium-ion batteries(LIBs)and employ advanced in situ magnetometry to detect their intrinsic electronic structure during cycling in real time.The results show that FeF_(2) cannot be involved in complete conversion reactions when the FeF_(2) LIBs operate between the conventional voltage range of 1.0–4.0 V,and that the corresponding conversion ratio of FeF_(2) can be further estimated.Importantly,we first demonstrate that the spin-polarized surface capacitance exists in the FeF_(2) cathode by monitoring the magnetic responses over various voltage ranges.The research presents an original and insightful method to examine the conversion mechanism of TMFs and significantly provides an important reference for the future artificial design of energy systems based on spinpolarized surface capacitance.
基金National Natural Science Foundation of China,Grant/Award Number:22071137Key Projects of China National Key R&D Plan,Grant/Award Number:2018YFE0118200+1 种基金Key Projects of Shandong Key R&D plan,Grant/Award Number:2019JZZY010506Taishan Scholar Foundation,Grant/Award Number:tspd20210308。
文摘Design of supportive atomic sites with a controllably adjusted coordinating environment is essential to advancing the reduction of CO_(2) to value-added fuels and chemicals and to achieving carbon neutralization.Herein,atomic Ni(Zn)sites that are uniquely coordinated with ternary Zn(Ni)/N/O ligands were successfully decorated on formamide-derived porous carbon nanomaterials,possibly forming an atomic structure of Ni(N_(2)O_(1))-Zn(N_(2)O_(1)),as studied by combining X-ray photoelectron spectroscopy and X-ray absorption spectroscopy.With the mediation of additional O coordination,the Ni-Zn dual site induces significantly decreased desorption of molecular CO.The NiZn-NC decorated with rich Ni(N_(2)O_(1))-Zn(N_(2)O_(1))sites remarkably gained>97%CO Faraday efficiency over a wide potential range of -0.8 to -1.1 V(relative to reversible hydrogen electrode).Density functional theory computations suggest that the N/O dual coordination effectively modulates the electronic structure of the Ni-Zn duplex and optimizes the adsorption and conversion properties of CO_(2) and subsequent intermediates.Different from the conventional pathway of using Ni as the active site in the Ni-Zn duplex,it is found that the Ni-neighboring Zn sites in the Ni(N_(2)O_(1))-Zn(N_(2)O_(1))coordination showed much lower energy barriers of the CO_(2) protonation step and the subsequent dehydroxylation step.
文摘Stretchable energy storage devices,maintaining the capability of steady operation under large mechanical strain,have become increasing more important with the development of stretchable electronic devices.Stretchable supercapacitors(SSCs),with high power density,modest energy density,and superior mechanical properties are regarded as one of the most promising power supplies to stretchable electronic devices.Conductive polymers,such as polyaniline(PANI),polypyrrole(PPy),polythiophene(PTh)and poly(3,4-ehtylenedioxythiophene)(PEDOT),are among the well-studied electroactive materials for the construction of SSCs because of their high specific theoretical capacity,excellent electrochemical activity,light weight,and high flexibility.Much effort has been devoted to developing stretchable,conductive polymer-based SSCs with different device structures,such as sandwich-type and fiber-shaped type SSCs.This review summarizes the material and structural design for con ductive polymer-based SSCs and discusses the challenge and importa nt di recti ons in this emergi ng field.
基金financially supported by the National Natural Science Foundation of China (22071137)the Program for Tsingtao Al-ion Power and Energy-storage Battery Research Team in the University (17-2-1-1-zhc)。
文摘The direct electrochemical synthesis of H_(2)O_(2)from O_(2)is currently the most promising alternative to energyintensive industrial anthraquinone oxidation/reduction methods. However, its widespread use is hampered by the lack of efficient low-cost electrocatalysts. In the current study,oxygenated boron-doped carbon(O-BC) materials were realized via a green synthetic strategy involving polymer dehalogenation and employed as electrode materials for the electrochemical synthesis of H_(2)O_(2)via a 2 e-oxygen reduction.The catalytic activity of the O-BC materials was optimized through systematic variation of the boron source(H_(2)BO_(2))dosage and annealing temperature. Electrochemical measurements revealed that the optimal sample(O-BC-2-650)exhibited a selectivity of 98% for the 2 e-oxygen reduction to H2 O_(2)and an average H_(2)O_(2)production rate of412.8 mmol g_(cat)^(-1) h^(-1)in an H-type alkaline electrolyzer. Density functional theory simulations indicated that the functionalization of active B sites with one oxygen atom provides the lowest Gibbs free energy change(ΔG) of 0.03 e V for the hydrogenation of*O_(2), while functionalization with zero or two O atoms results in much larger ΔG values(0.08 and 0.10 e V,respectively). Thus, this work details a new type of green, lowcost, and metal-free electrocatalyst for H_(2)O_(2)production.
基金financially supported by the National Natural Science Foundation of China (NSFC,22071137 and 62176143)the Elite Project of Shandong University of Science and Technologythe Natural Science Foundation of Shandong Province (ZR2021MF001)
文摘氧化钼(MoO_(3))是一种具有吸引力的锂离子电池(LIBs)负极材料;然而,其导电性低、锂化后体积膨胀大、锂离子扩散动力学缓慢等特点严重限制了其实际应用.本文中,我们利用高量Mo/N掺杂的碳前驱材料合成了超细的MoO_(3)纳米颗粒(NPs,10–15 nm),所合成的MoO_(3)NPs被限制在原位生成的N掺杂碳网络结构中.这种设计既促进了快速的电子传导,又缩短了锂离子扩散路径;同时,MoO_(3)表面丰富的氮物种和氧缺陷有助于降低锂离子的吸附能垒,这些共同支持了MoO_(3)NPs在高电流倍率下耐久储锂性能的提升.值得注意的是,所获得的NCMoO_(3)纳米复合材料表现出1362 mA h g^(−1)(0.1 A g^(−1))的较高容量,并在10.0 A g^(−1)时保持394 mA h g^(−1)的可逆容量.全电池测试表明:在大倍率5 C下,LiFePO_(4)//NC-MoO_(3)-400电池仍可以输出81 mA h g^(−1)的比容量.我们的工作有望启发其他嵌入导电碳网络的过渡金属氧化物的设计合成及其在LIBs中的实际应用.