In China,geothermal resource utilization has mainly focused on resources at shallow and medium depths.Yet,the exploration of deep,high-temperature geothermal resources holds significant importance for achieving the“d...In China,geothermal resource utilization has mainly focused on resources at shallow and medium depths.Yet,the exploration of deep,high-temperature geothermal resources holds significant importance for achieving the“dual carbon”goals and the transition of energy structure.The Jiyang Depression in the Bohai Bay Basin has vast potential for deep,high-temperature geothermal resources.By analyzing data from 2187 wells with temperature logs and 270 locations for temperature measurement in deep strata,we mapped the geothermal field of shallow to medium-deep layers in the Jiyang Depression using ArcGIS and predicted the temperatures of deep layers with a burial depth of 4000 m.Through stochastic modeling and numerical simulation,a reservoir attribute parameter database for favorable deep,high-temperature geothermal areas was developed,systematically characterizing the spatial distribution of geothermal resources within a play fairway of 139.5 km2 and estimating the exploitable deep geothermal resource potential by using the heat storage method and Monte Carlo data analysis.The study reveals that the Fan 54 well block in the Boxing-Jijia region is of prime significance to develop deep,high-temperature geothermal resources in the Jiyang Depression.Strata from the Cenozoic to the Upper Paleozoic are identified as effective cap layers for these deep geothermal resources.The Lower Paleozoic capable of effectively storing thermal energy and possessing an exploitable resource volume up to 127 million tons of standard coal,is identified as a target system for the development of deep high-temperature geothermal resources,providing significant insights for the efficient development of geothermal resources in the Jiyang Depression.展开更多
With the fast development of Qingdao's economy, the energy consumption is increasing significantly. In this paper, based on the energy statistic data in Qingdao area from 2010 to 2015,energy consumption structure ...With the fast development of Qingdao's economy, the energy consumption is increasing significantly. In this paper, based on the energy statistic data in Qingdao area from 2010 to 2015,energy consumption structure was analyzed, indicating the existence of single energy structure;that is, coal, petroleum, and natural gas are dominant in the area. Thus, some issues between energy supply and demand have been brought. To solve present problem, we put forward to formulate the development strategy of energy, including energy savings, the exploitation of petroleum and natural gas resources, the development and utilization of renewable energy sources, and energy policy. It is worthy of mentioning that, according to the geological investigation, the shale gas may be abundant in Qingdao area and the gas resource amount estimated is huge. This is our first finding, important for developing unconventional energy and adjusting the energy structure in Qingdao in the future. Therefore, we suggest that Qingdao government should take action to develop local new energy resources for satisfying the energy demand.展开更多
sequences found in the huge,integrated database of protein sequences(Big Fantastic Database).In contrast,the existing nucleotide databases were not consolidated to facilitate wider and deeper homology search.Here,we b...sequences found in the huge,integrated database of protein sequences(Big Fantastic Database).In contrast,the existing nucleotide databases were not consolidated to facilitate wider and deeper homology search.Here,we built a comprehensive database by incorporating the non-coding RNA(ncRNA)sequences from RNAcentral,the transcriptome assembly and metagenome assembly from metagenomics RAST(MG-RAST),the genomic sequences from Genome Warehouse(GWH),and the genomic sequences from MGnify,in addition to the nucleotide(nt)database and its subsets in National Center of Biotechnology Information(NCBI).The resulting Master database of All possible RNA sequences(MARS)is 20-fold larger than NCBI’s nt database or 60-fold larger than RNAcentral.The new dataset along with a new split-search strategy allows a substantial improvement in homology search over existing state-of-the-art techniques.It also yields more accurate and more sensitive multiple sequence alignments(MSAs)than manually curated MSAs from Rfam for the majority of structured RNAs mapped to Rfam.The results indicate that MARS coupled with the fully automatic homology search tool RNAcmap will be useful for improved structural and functional inference of ncRNAs and RNA language models based on MSAs.MARS is accessible at https://ngdc.cncb.ac.cn/omix/release/OMIX003037,and RNAcmap3 is accessible at http://zhouyq-lab.szbl.ac.cn/download/.展开更多
Intrinsically disordered or unstructured proteins(or regions in proteins) have been found to be important in a wide range of biological functions and implicated in many diseases. Due to the high cost and low efficienc...Intrinsically disordered or unstructured proteins(or regions in proteins) have been found to be important in a wide range of biological functions and implicated in many diseases. Due to the high cost and low efficiency of experimental determination of intrinsic disorder and the exponential increase of unannotated protein sequences, developing complementary computational prediction methods has been an active area of research for several decades. Here, we employed an ensemble of deep Squeeze-and-Excitation residual inception and long short-term memory(LSTM) networks for predicting protein intrinsic disorder with input from evolutionary information and predicted one-dimensional structural properties. The method, called SPOT-Disorder2, offers substantial and consistent improvement not only over our previous technique based on LSTM networks alone,but also over other state-of-the-art techniques in three independent tests with different ratios of disordered to ordered amino acid residues, and for sequences with either rich or limited evolutionary information. More importantly, semi-disordered regions predicted in SPOT-Disorder2 are more accurate in identifying molecular recognition features(MoRFs) than methods directly designed for MoRFs prediction. SPOT-Disorder2 is available as a web server and as a standalone program at https://sparks-lab.org/server/spot-disorder2/.展开更多
The Lingshan Island scientific drill confirms that two episodes(Laiyang period and Qingshan period) of rifting developed in the central Sulu orogenic belt(SOB) in Late Mesozoic. With a set of methods including fieldwo...The Lingshan Island scientific drill confirms that two episodes(Laiyang period and Qingshan period) of rifting developed in the central Sulu orogenic belt(SOB) in Late Mesozoic. With a set of methods including fieldwork, drilling, core logging, zircon U-Pb dating and whole rock geochemistry applied, the age, the depositional sequence and the deep dynamic mechanisms of rift evolution were unraveled. The stratigraphic sequence of the Laiyang-Qingshan Groups on Lingshan Island was composed of two different rifting sequences:(1) Laiyang Group(147–125 Ma), which consists of deep-water gravity flow deposits with interlayers of intermediate volcanic rocks;and(2) Lower Qingshan Group(125–119 Ma), which unconformably overlies the former sequence and contains subaerial volcanic deposits and terrestrial deposits. The tectonic environment changed during the evolution of these two episodes of rifting: the rift was in a NNW-SSE extensional environment in the Laiyang period and showed the typical passive rifting character that “lithospheric extension and rifting preceded volcanism”. The passive rifting period was ended by a short WNW-ESE compression at about 125 Ma. After that, the tectonic environment transferred to a strong NW-SE extensional environment and the rifting evolved into a volcanic arc basin in the Qingshan period. The igneous rocks are shoshonitic to high-K calc-alkaline trachyandesites to trachytes with a few intercalated lamprophyres and a rhyolite.The geochemical characteristics of the igneous rocks indicate that they are mantle-derived melts with a metasomatized mantle source and/or crustal contamination. In addition, an increased thinning of the lithosphere happened during the rifting episodes.The low-angle subduction of the Paleo-Pacific plate in the Jurassic weakened the thickened SOB lithospheric mantle. The rollback of the subducting plate started in late Jurassic to early Cretaceous, and the SOB lithospheric mantle was delaminated synchronously because of the gravity collapse. Thus, this caused passive rifting in the Laiyang period. Thereafter, the rollback and trench retreat of the high-angle subducting Paleo-Pacific plate would have achieved its climax, resulting in the strong regional extension. Passive rifting was ended by the crustal uplift caused by asthenospheric upwelling beneath the rift. The lower crust was heated by the upwelling asthenosphere and partially melted to form felsic melts, which were emplaced upwards and erupted explosively. The rift evolved into a volcanic arc basin in the Qingshan period and showed some characteristics of active rifting. Above all, a passive rifting in the Laiyang period and a volcanic arc basin in the Qingshan period developed successively in the Lingshan Island area(the central SOB). This records the transfer of the study area from the Paleo-Tethys tectonic domain to the circum-Pacific tectonic domain. The delamination of SOB lithospheric mantle and the upwelling of asthenospheric material were the deep dynamic mechanisms driving the development and evolution of two rift episodes. Additionally, the rift development was controlled remotely by the subduction of the Paleo-Pacific plate.展开更多
The Sulu orogenic belt is an uplift zone that was formed in the Late Triassic.Several Jurassic to Cretaceous sedimentary successions have been recognized within the Sulu orogenic belt in recent studies,including outcr...The Sulu orogenic belt is an uplift zone that was formed in the Late Triassic.Several Jurassic to Cretaceous sedimentary successions have been recognized within the Sulu orogenic belt in recent studies,including outcrops that are considered to be related to the newly discovered Riqingwei Basin.This basin has been the focus of extensive study due to its continuous Cretaceous rock sequence,geological location and petroleum resource potential.However,the lack of a consolidated chronology for the strata has precluded a better understanding of stratigraphy,tectonic evolution and resource potential of the Riqingwei Basin.Here,we present the results of a new magnetostratigraphic study of the continental scientific drilling borehole LK-1,which is located on Lingshan Island,offshore Shandong province,eastern China.The goals of this study are to(1)refine the Late Jurassic to Early Cretaceous chronostratigraphic framework of the Riqingwei Basin,and(2)investigate the location of the J/K boundary in the Borehole Core LK-1.The observed patterns of the paleomagnetic polarity zone in the LK-1 borehole correlate well with the geomagnetic polarity time scale(GPTS),and the continuous magnetostratigraphy profile defined in this core indicates an age ranging from 146.5 to 125.8 Ma for the samples interval.The sediment accumulation rates(SAR)of LK-1 show one period of high SAR(~10.5 cm kyr^(-1))at 135.3–130.6 Ma and two periods of low SAR(~4.8 and~2.2 cm kyr^(-1))at145.7–135.3 and 130.6–125.8 Ma,respectively.In addition,the magnetostratigraphic results suggest that the Jurassic-Cretaceous(J/K)boundary of the LK-1 is located within the magnetozone N21.2 n(~1254 m).This comprehensive geochronologic framework provides a good correlation of the marine Upper Jurassic to Lower Cretaceous strata in the Riqingwei Basin to other marine strata and continental sequences,in addition to providing a foundation for the study of the structural evolution of eastern China.展开更多
A series of Cenozoic potassium-rich volcanic rocks developed in the Xiaoguli-Keluo-Wudalianchi-Erkeshan districts,northeast China.The source region and potassium-rich mechanism of the potassic rocks remain highly disp...A series of Cenozoic potassium-rich volcanic rocks developed in the Xiaoguli-Keluo-Wudalianchi-Erkeshan districts,northeast China.The source region and potassium-rich mechanism of the potassic rocks remain highly disputed.In this paper,the major elements,trace elements,and Sr-Nd-Pb isotopes of the volcanic rocks in Keluo(KL)and Wudalianchi(WDLC)volcanic districts were analyzed systematically.The results show that the volcanic rocks are characterized by high K2O(4.36wt.%-6.13wt.%),remarkable enrichment in LREEs and LILEs,as well as the strong fractionation of HREEs.The isotopic characteristics with high 87Sr/86Sr(0.704990-0.705272),low 143Nd/144Nd(0.512306-0.512417),low 206Pb/204Pb(16.546-17.135)and 207Pb/204Pb(15.002-15.783)of the volcanic rocks suggest the involvement of EM-I-type mantle.On the basis of the geochemical characteristics,the potassium-rich volcanic magma originated from the new SCLM forming after delamination of the ancient SCLM,with metasomatism of the potassium-rich fluids released from the ancient lower crust during the Late Mesozoic.The proposed genetic model assumes the source which represented by a phlogopite-bearing garnet peridotite(with modal garnet in the range of 2%-10%)experienced very low degrees(i.e.,~0.5)of partial melting.During Cenozoic,the lithosphere in northeast China was affected by the extension and decompression of continental rift,and the metasomatized SCLM underwent low degree partial melting,resulting in the formation of potassium-rich primitive basaltic magma.展开更多
The geological units in Shandong Province, North China are important parts of the North China Craton and offer important insights into their crustal evolutionary history. This paper presents 611 sets of Nd isotopic da...The geological units in Shandong Province, North China are important parts of the North China Craton and offer important insights into their crustal evolutionary history. This paper presents 611 sets of Nd isotopic data of Archean–Mesozoic rocks from Shandong including the Luxi, Jiaobei, and Sulu terranes, which provides important constraints for crustal growth and reactivation. Nd-depleted mantle model ages(TDM) of Archean rocks with positive εNd(t) values showed that ca. 2.9 and 2.8–2.7 Ga were the most important periods of crustal growth in the Jiaobei and Luxi terranes, respectively, while the period of ca. 2.6–2.5 Ga in the Jiaobei terrane likely indicates a coherent event of crustal growth and reworking. During the Proterozoic, multi-stage rifting and collisional orogenic events possibly led to the reworking of Archean crust in the source region. The Nd isotopic data of the Paleoproterozoic and Neoproterozoic rocks from Sulu indicated significant reworking of older crust with juvenile magmatic input. Crustal reactivation occurred during the Mesozoic. The younger TDM ages of the Mesozoic rocks with low negative εNd(t) values indicate that a juvenile crustal/mantle component was added to the ancient basement. The reactivation reflectes significant crust-mantle interaction via the mechanism of crustal subduction and mantle-derived magma underplating, or possibly asthenospheric upwelling. In addition, the crustal correlation between Shandong and Korea(including the Gyeonggi massif, Ogcheon belt, and Yeongnam massif) is established in this study. The TDM age distribution provides evidence favoring the affinity relationship between the Gyeonggi massif and Ogcheon belt of South Korea and the Jiaobei and Sulu terranes of Shandong, while the Yeongnam massif is more correlated with the South China Block.展开更多
A kind of special sedimentary structures are developed in the overwater plains of the Yellow River delta. They look like funnels: round or nearly round, concave of pit-like, with a diameter ranging from several centim...A kind of special sedimentary structures are developed in the overwater plains of the Yellow River delta. They look like funnels: round or nearly round, concave of pit-like, with a diameter ranging from several centimeters to 20 or 30 cm, and depth from several millimeters to over 20 cm. There is a vertical pipe (called gas discharging conduit) in the center, with a diameter of several millimeters to 1 cm, depth of several centimeters to more than 10 cm. There may be a lip-like relief (called 'lip-like relief') on the periphery or some parts of the periphery, with ring structures showing horizontal stratification on the inner margin. Plant debris carbonized, plant fragments or dark-colored minerals may sometimes be found in the center of the pits. Such structures are usually developed in silt (with minor clay laminations), often underlain by one or more thin layers of mud matter. Our studies find that they are genetically related with gas discharging of organic matter during biological degradation.展开更多
基金Research Project(SNKJ2022A06-R23)the Innovation Fund Project for Graduate Student of China University of Petroleum(East China)the Fundamental Research Funds for the Central Uni-versities(No.24CX04021A)。
文摘In China,geothermal resource utilization has mainly focused on resources at shallow and medium depths.Yet,the exploration of deep,high-temperature geothermal resources holds significant importance for achieving the“dual carbon”goals and the transition of energy structure.The Jiyang Depression in the Bohai Bay Basin has vast potential for deep,high-temperature geothermal resources.By analyzing data from 2187 wells with temperature logs and 270 locations for temperature measurement in deep strata,we mapped the geothermal field of shallow to medium-deep layers in the Jiyang Depression using ArcGIS and predicted the temperatures of deep layers with a burial depth of 4000 m.Through stochastic modeling and numerical simulation,a reservoir attribute parameter database for favorable deep,high-temperature geothermal areas was developed,systematically characterizing the spatial distribution of geothermal resources within a play fairway of 139.5 km2 and estimating the exploitable deep geothermal resource potential by using the heat storage method and Monte Carlo data analysis.The study reveals that the Fan 54 well block in the Boxing-Jijia region is of prime significance to develop deep,high-temperature geothermal resources in the Jiyang Depression.Strata from the Cenozoic to the Upper Paleozoic are identified as effective cap layers for these deep geothermal resources.The Lower Paleozoic capable of effectively storing thermal energy and possessing an exploitable resource volume up to 127 million tons of standard coal,is identified as a target system for the development of deep high-temperature geothermal resources,providing significant insights for the efficient development of geothermal resources in the Jiyang Depression.
基金supported by Fundamental Research Funds for the Central Universities:[Grant Number 15CX05070A]
文摘With the fast development of Qingdao's economy, the energy consumption is increasing significantly. In this paper, based on the energy statistic data in Qingdao area from 2010 to 2015,energy consumption structure was analyzed, indicating the existence of single energy structure;that is, coal, petroleum, and natural gas are dominant in the area. Thus, some issues between energy supply and demand have been brought. To solve present problem, we put forward to formulate the development strategy of energy, including energy savings, the exploitation of petroleum and natural gas resources, the development and utilization of renewable energy sources, and energy policy. It is worthy of mentioning that, according to the geological investigation, the shale gas may be abundant in Qingdao area and the gas resource amount estimated is huge. This is our first finding, important for developing unconventional energy and adjusting the energy structure in Qingdao in the future. Therefore, we suggest that Qingdao government should take action to develop local new energy resources for satisfying the energy demand.
基金supported by grants from the National Key R&D Program of China(Grant No.2021YFF1200400)the Major Program of Shenzhen Bay Laboratory,China(Grant No.S201101001)+1 种基金the Shenzhen Science and Technology Innovation Program,China(Grant No.KQTD20170330155106581)the Griffith University Postgraduate Fellowship,Australia.
文摘sequences found in the huge,integrated database of protein sequences(Big Fantastic Database).In contrast,the existing nucleotide databases were not consolidated to facilitate wider and deeper homology search.Here,we built a comprehensive database by incorporating the non-coding RNA(ncRNA)sequences from RNAcentral,the transcriptome assembly and metagenome assembly from metagenomics RAST(MG-RAST),the genomic sequences from Genome Warehouse(GWH),and the genomic sequences from MGnify,in addition to the nucleotide(nt)database and its subsets in National Center of Biotechnology Information(NCBI).The resulting Master database of All possible RNA sequences(MARS)is 20-fold larger than NCBI’s nt database or 60-fold larger than RNAcentral.The new dataset along with a new split-search strategy allows a substantial improvement in homology search over existing state-of-the-art techniques.It also yields more accurate and more sensitive multiple sequence alignments(MSAs)than manually curated MSAs from Rfam for the majority of structured RNAs mapped to Rfam.The results indicate that MARS coupled with the fully automatic homology search tool RNAcmap will be useful for improved structural and functional inference of ncRNAs and RNA language models based on MSAs.MARS is accessible at https://ngdc.cncb.ac.cn/omix/release/OMIX003037,and RNAcmap3 is accessible at http://zhouyq-lab.szbl.ac.cn/download/.
基金supported by Australian Research Council (Grant No. DP180102060) to YZ and KPin part by the National Health and Medical Research Council (Grant No. 1121629) of Australia to YZ+1 种基金the High Performance Computing Cluster ‘Gowonda’ to complete this studythe aid of the research cloud resources provided by the Queensland Cyber Infrastructure Foundation (QCIF), Australia.
文摘Intrinsically disordered or unstructured proteins(or regions in proteins) have been found to be important in a wide range of biological functions and implicated in many diseases. Due to the high cost and low efficiency of experimental determination of intrinsic disorder and the exponential increase of unannotated protein sequences, developing complementary computational prediction methods has been an active area of research for several decades. Here, we employed an ensemble of deep Squeeze-and-Excitation residual inception and long short-term memory(LSTM) networks for predicting protein intrinsic disorder with input from evolutionary information and predicted one-dimensional structural properties. The method, called SPOT-Disorder2, offers substantial and consistent improvement not only over our previous technique based on LSTM networks alone,but also over other state-of-the-art techniques in three independent tests with different ratios of disordered to ordered amino acid residues, and for sequences with either rich or limited evolutionary information. More importantly, semi-disordered regions predicted in SPOT-Disorder2 are more accurate in identifying molecular recognition features(MoRFs) than methods directly designed for MoRFs prediction. SPOT-Disorder2 is available as a web server and as a standalone program at https://sparks-lab.org/server/spot-disorder2/.
基金supported by the Key R&D Plan of Shandong Province (Grant No. 2017CXGC1608)the Project of Department of Science and Technology of Sinopec (Grant No. P20028)+1 种基金the Shandong Natural Science Foundation Youth Fund Project (Grant No. ZR2020QD026)the Fundamental Research Funds for the Central Universities (Grant Nos. 18CX06019A, 19CX05004A)。
文摘The Lingshan Island scientific drill confirms that two episodes(Laiyang period and Qingshan period) of rifting developed in the central Sulu orogenic belt(SOB) in Late Mesozoic. With a set of methods including fieldwork, drilling, core logging, zircon U-Pb dating and whole rock geochemistry applied, the age, the depositional sequence and the deep dynamic mechanisms of rift evolution were unraveled. The stratigraphic sequence of the Laiyang-Qingshan Groups on Lingshan Island was composed of two different rifting sequences:(1) Laiyang Group(147–125 Ma), which consists of deep-water gravity flow deposits with interlayers of intermediate volcanic rocks;and(2) Lower Qingshan Group(125–119 Ma), which unconformably overlies the former sequence and contains subaerial volcanic deposits and terrestrial deposits. The tectonic environment changed during the evolution of these two episodes of rifting: the rift was in a NNW-SSE extensional environment in the Laiyang period and showed the typical passive rifting character that “lithospheric extension and rifting preceded volcanism”. The passive rifting period was ended by a short WNW-ESE compression at about 125 Ma. After that, the tectonic environment transferred to a strong NW-SE extensional environment and the rifting evolved into a volcanic arc basin in the Qingshan period. The igneous rocks are shoshonitic to high-K calc-alkaline trachyandesites to trachytes with a few intercalated lamprophyres and a rhyolite.The geochemical characteristics of the igneous rocks indicate that they are mantle-derived melts with a metasomatized mantle source and/or crustal contamination. In addition, an increased thinning of the lithosphere happened during the rifting episodes.The low-angle subduction of the Paleo-Pacific plate in the Jurassic weakened the thickened SOB lithospheric mantle. The rollback of the subducting plate started in late Jurassic to early Cretaceous, and the SOB lithospheric mantle was delaminated synchronously because of the gravity collapse. Thus, this caused passive rifting in the Laiyang period. Thereafter, the rollback and trench retreat of the high-angle subducting Paleo-Pacific plate would have achieved its climax, resulting in the strong regional extension. Passive rifting was ended by the crustal uplift caused by asthenospheric upwelling beneath the rift. The lower crust was heated by the upwelling asthenosphere and partially melted to form felsic melts, which were emplaced upwards and erupted explosively. The rift evolved into a volcanic arc basin in the Qingshan period and showed some characteristics of active rifting. Above all, a passive rifting in the Laiyang period and a volcanic arc basin in the Qingshan period developed successively in the Lingshan Island area(the central SOB). This records the transfer of the study area from the Paleo-Tethys tectonic domain to the circum-Pacific tectonic domain. The delamination of SOB lithospheric mantle and the upwelling of asthenospheric material were the deep dynamic mechanisms driving the development and evolution of two rift episodes. Additionally, the rift development was controlled remotely by the subduction of the Paleo-Pacific plate.
基金supported by the National Natural Science Foundation of China(Grant Nos.42002030,42072169)National Science and Technology Major Project(Grant No.2016ZX05024-002-001)+1 种基金the Key R&D Plan of Shandong Province(Grant No.2017CXGC1608)the Natural Science Foundation of Shandong Province(Grant No.ZR201910280267)。
文摘The Sulu orogenic belt is an uplift zone that was formed in the Late Triassic.Several Jurassic to Cretaceous sedimentary successions have been recognized within the Sulu orogenic belt in recent studies,including outcrops that are considered to be related to the newly discovered Riqingwei Basin.This basin has been the focus of extensive study due to its continuous Cretaceous rock sequence,geological location and petroleum resource potential.However,the lack of a consolidated chronology for the strata has precluded a better understanding of stratigraphy,tectonic evolution and resource potential of the Riqingwei Basin.Here,we present the results of a new magnetostratigraphic study of the continental scientific drilling borehole LK-1,which is located on Lingshan Island,offshore Shandong province,eastern China.The goals of this study are to(1)refine the Late Jurassic to Early Cretaceous chronostratigraphic framework of the Riqingwei Basin,and(2)investigate the location of the J/K boundary in the Borehole Core LK-1.The observed patterns of the paleomagnetic polarity zone in the LK-1 borehole correlate well with the geomagnetic polarity time scale(GPTS),and the continuous magnetostratigraphy profile defined in this core indicates an age ranging from 146.5 to 125.8 Ma for the samples interval.The sediment accumulation rates(SAR)of LK-1 show one period of high SAR(~10.5 cm kyr^(-1))at 135.3–130.6 Ma and two periods of low SAR(~4.8 and~2.2 cm kyr^(-1))at145.7–135.3 and 130.6–125.8 Ma,respectively.In addition,the magnetostratigraphic results suggest that the Jurassic-Cretaceous(J/K)boundary of the LK-1 is located within the magnetozone N21.2 n(~1254 m).This comprehensive geochronologic framework provides a good correlation of the marine Upper Jurassic to Lower Cretaceous strata in the Riqingwei Basin to other marine strata and continental sequences,in addition to providing a foundation for the study of the structural evolution of eastern China.
基金supported by the Marine S&T Fund of Shandong Province for Pilot National Laboratory for Marine Science and Technology(Qingdao)(No.2021QNLM020001-1)Natural Science Foundation of Shandong Province(No.ZR2021MD083)+1 种基金National Natural Science Foundation of China(Grant Nos.41302102 and 41772190)Graduate Innovation Project of China University of Petroleum(East China)(No.YCX2021020).
文摘A series of Cenozoic potassium-rich volcanic rocks developed in the Xiaoguli-Keluo-Wudalianchi-Erkeshan districts,northeast China.The source region and potassium-rich mechanism of the potassic rocks remain highly disputed.In this paper,the major elements,trace elements,and Sr-Nd-Pb isotopes of the volcanic rocks in Keluo(KL)and Wudalianchi(WDLC)volcanic districts were analyzed systematically.The results show that the volcanic rocks are characterized by high K2O(4.36wt.%-6.13wt.%),remarkable enrichment in LREEs and LILEs,as well as the strong fractionation of HREEs.The isotopic characteristics with high 87Sr/86Sr(0.704990-0.705272),low 143Nd/144Nd(0.512306-0.512417),low 206Pb/204Pb(16.546-17.135)and 207Pb/204Pb(15.002-15.783)of the volcanic rocks suggest the involvement of EM-I-type mantle.On the basis of the geochemical characteristics,the potassium-rich volcanic magma originated from the new SCLM forming after delamination of the ancient SCLM,with metasomatism of the potassium-rich fluids released from the ancient lower crust during the Late Mesozoic.The proposed genetic model assumes the source which represented by a phlogopite-bearing garnet peridotite(with modal garnet in the range of 2%-10%)experienced very low degrees(i.e.,~0.5)of partial melting.During Cenozoic,the lithosphere in northeast China was affected by the extension and decompression of continental rift,and the metasomatized SCLM underwent low degree partial melting,resulting in the formation of potassium-rich primitive basaltic magma.
基金supported by a scientific and technological innovation project of Shandong Province(No.2017CXGC1608)
文摘The geological units in Shandong Province, North China are important parts of the North China Craton and offer important insights into their crustal evolutionary history. This paper presents 611 sets of Nd isotopic data of Archean–Mesozoic rocks from Shandong including the Luxi, Jiaobei, and Sulu terranes, which provides important constraints for crustal growth and reactivation. Nd-depleted mantle model ages(TDM) of Archean rocks with positive εNd(t) values showed that ca. 2.9 and 2.8–2.7 Ga were the most important periods of crustal growth in the Jiaobei and Luxi terranes, respectively, while the period of ca. 2.6–2.5 Ga in the Jiaobei terrane likely indicates a coherent event of crustal growth and reworking. During the Proterozoic, multi-stage rifting and collisional orogenic events possibly led to the reworking of Archean crust in the source region. The Nd isotopic data of the Paleoproterozoic and Neoproterozoic rocks from Sulu indicated significant reworking of older crust with juvenile magmatic input. Crustal reactivation occurred during the Mesozoic. The younger TDM ages of the Mesozoic rocks with low negative εNd(t) values indicate that a juvenile crustal/mantle component was added to the ancient basement. The reactivation reflectes significant crust-mantle interaction via the mechanism of crustal subduction and mantle-derived magma underplating, or possibly asthenospheric upwelling. In addition, the crustal correlation between Shandong and Korea(including the Gyeonggi massif, Ogcheon belt, and Yeongnam massif) is established in this study. The TDM age distribution provides evidence favoring the affinity relationship between the Gyeonggi massif and Ogcheon belt of South Korea and the Jiaobei and Sulu terranes of Shandong, while the Yeongnam massif is more correlated with the South China Block.
文摘A kind of special sedimentary structures are developed in the overwater plains of the Yellow River delta. They look like funnels: round or nearly round, concave of pit-like, with a diameter ranging from several centimeters to 20 or 30 cm, and depth from several millimeters to over 20 cm. There is a vertical pipe (called gas discharging conduit) in the center, with a diameter of several millimeters to 1 cm, depth of several centimeters to more than 10 cm. There may be a lip-like relief (called 'lip-like relief') on the periphery or some parts of the periphery, with ring structures showing horizontal stratification on the inner margin. Plant debris carbonized, plant fragments or dark-colored minerals may sometimes be found in the center of the pits. Such structures are usually developed in silt (with minor clay laminations), often underlain by one or more thin layers of mud matter. Our studies find that they are genetically related with gas discharging of organic matter during biological degradation.