Although MXenes is highly attractive as anode materials of lithium ion batteries,it sets a bottleneck for higher capacity of the V2CTxMXene due to the limited interlayer space and the derived surface terminations.Here...Although MXenes is highly attractive as anode materials of lithium ion batteries,it sets a bottleneck for higher capacity of the V2CTxMXene due to the limited interlayer space and the derived surface terminations.Herein,the cation intercalation and ion-exchange were well employed to achieve a K+and Ca2+intercalated V2CTxMXene.A larger interlayer distance and low F surface terminations were thereof obtained,which accelerates the ion transport and promotes the delicate surface of V2CTx MXene.As a result,a package of enhanced capacity,rate performance and cyclability can be achieved.Furthermore,the ion exchange approach can be extended to other 2 D layered materials,and both the interlayer control and the surface modification will be achieved.展开更多
Fluorescent silk is fundamentally important for the development of future tissue engineering scaffolds.Despite great progress in the preparation of a variety of colored silks,fluorescent silk with enhanced mechanical ...Fluorescent silk is fundamentally important for the development of future tissue engineering scaffolds.Despite great progress in the preparation of a variety of colored silks,fluorescent silk with enhanced mechanical properties has yet to be explored.In this study,we report on the fabrication of intrinsically super-strong fluorescent silk by feeding Bombyx mori silkworm carbon nanodots(CNDs).The CNDs were incorporated into silk fibroin,hindering the conformation transformation,confining crystallization,and inducing orientation of mesophase.The resultant silk exhibited super-strong mechanical properties with breaking strength of 521.9±82.7 MPa and breaking elongation of 19.2±4.3%,improvements of 55.1%and 53.6%,respectively,in comparison with regular silk.The CNDs-reinforced silk displayed intrinsic blue fluorescence when exposed to 405 nm laser and exhibited no cytotoxic effect on cells,suggesting that multi-functional silks would be potentially useful in bioimaging and other applications.展开更多
MXene is a rising star of two-dimensional(2D)materials for energy relative applications,however,the traditional synthesis of MXene etched by hazard HF acid or LiF+HCl mixed solution is highly dangerous with the risk o...MXene is a rising star of two-dimensional(2D)materials for energy relative applications,however,the traditional synthesis of MXene etched by hazard HF acid or LiF+HCl mixed solution is highly dangerous with the risk of splashing or pouring liquid solutions.In this work,we developed a water-free ionothermal synthesis of 2D Ti3C2 MXene via etching pristine Ti3AlC2 MAX in low-cost choline chloride and oxalic acid based deep eutectic solvents(DES)with the presence of NH4F,thus it was highly safe and convenient to operate solid precursor and product materials at room temperature.Benefited from the low vapor pressure and solvating properties of DES,the prepared Ti3C2(denoted as DES-Ti3C2)possessed a high purity up to 98% compared with 95% for HF etched Ti3C2(denoted as HF-Ti3C2).Notably,an expanded interlayer spacing of 1.35 nm could be achieved due to the intercalation of choline cations in DES-Ti3C2,larger than that of HF-Ti3C2(0.98 nm).As a result,the DES-Ti3C2 anodes exhibited enhanced lithium storage performance,such as high reversible capacity of 208 m Ah g-1at 0.5 A g-1,and long cycle life over 400 times,outperforming most reported pure MXene anodes.The ionothermal synthesis of MXene developed here may pave a new way to safely prepare other MXene for various energy relating applications.展开更多
Constructing an artificial intelligence interactive system is still challenging due to the lack of an integrated artificial sensing and processing system with high performance.In this work,an artificial tactile percep...Constructing an artificial intelligence interactive system is still challenging due to the lack of an integrated artificial sensing and processing system with high performance.In this work,an artificial tactile perception system with integrated sensing,storage,and computing functions is designed based on silk fibroin composite memristors and piezoresistive pressure sensors.The sensors based on polydimethylsiloxane/silver nanowires can sense the external pressure stimulation with fast response speed.In addition,the composite memristor based on silk fibroin possesses good cyclic stability and synaptic plasticity simulation and acts as an artificial synapse to process tactile information.As a result,the integrated tactile perception system realizes the perception,storage,and processing of pressure information,demonstrating the possibility to simulate the biological tactile perception nervous system.This type of system may promote potential applications in artificial intelligence,such as autonomous driving,wearable,flexible electronic devices,and bionic robots.展开更多
Acute liver failure(ALF)has a mortality rate of more than 40%.Currently,orthotopic liver transplantation is the sole clinical treatment for ALF,but its wide usage is severely limited due to donor shortage and immunolo...Acute liver failure(ALF)has a mortality rate of more than 40%.Currently,orthotopic liver transplantation is the sole clinical treatment for ALF,but its wide usage is severely limited due to donor shortage and immunological rejection.An emerging and promising technology for ALF treatment is liver tissue engineering(LTE),wherein porous scaffolds serve as a crucial component.Nanofiber scaffolds,which mimic the inherent structures of fibrous extracellular matrix well,provide an ideal environment for cell growth and tissue regeneration.Recently,several functional nanofiber scaffolds for LTE have been developed,which show impressive results in regulating cell function and repairing liver injury when combined with appropriate seeding cells and/or growth factors.This review firstly introduces the etiologies and treatment indicators of ALF.Subsequently,typical fabrication technologies of nanofiber scaffolds and their related applications for function regulation of liver-related cells and treatment of ALF are comprehensively summarized.Particular emphasis is placed on the strategies involving an appropriate combination of suitable seeding cells and growth factors.Finally,the current challenges and the future research and development prospects of nanofiber scaffold-based LTE are discussed.This review will serve as a valuable reference for designing and modifying novel nanofiber scaffolds,further promoting their potential application in LTE and other biomedical fields.展开更多
Pure organic room temperature phosphorescence(RTP) has been attracting a lot interest recently. So far,many strategies have succeeded in achieving efficient organic RTP materials by increasing the rate of intersystem ...Pure organic room temperature phosphorescence(RTP) has been attracting a lot interest recently. So far,many strategies have succeeded in achieving efficient organic RTP materials by increasing the rate of intersystem crossing(ISC) and suppressing non-radiative transitions. In supramolecular chemistry, the control and regulation of molecular recognition based on the role of the host and vip in supramolecular polymers matrix, has attracted much attention. Recently, researchers have successfully achieved room temperature phosphorescence of pure organic complexes through host-vip interactions. The host molecule specifically includes the phosphorescent vip to reduce non-radiative transitions and enhance room temperature phosphorescence emission. This review aims to describe the developments and achievements of pure organic room temperature phosphorescence systems through the mechanism of host-vip interactions in recent years, and demonstrates the exploration and pursuit of phosphorescent materials of researchers in different fields.展开更多
Gelatin(G)is a commonly used natural biomaterial owing to its good biocompatibility and easy availability.However,using pure gelatin as a bioink can barely achieve an ideal shape fidelity in 3D printing.In this study,...Gelatin(G)is a commonly used natural biomaterial owing to its good biocompatibility and easy availability.However,using pure gelatin as a bioink can barely achieve an ideal shape fidelity in 3D printing.In this study,Antheraea pernyi silk fibroin nanofibers(ASFNFs)with arginine-glycine-aspartic acid(RGD)peptide and partial natural silk structure are extracted and combined with pure gelatin bioink to simultaneously improve the shape fidelity and cytocompatibility of corresponding 3D printed scaffold.Results show that the optimum printing temperature is 30℃ for these bioinks.The printed filaments using 16G/4ASFNFs bioink(16wt%gelatin and 4wt%ASFNFs)demonstrate better morphology and larger pore size than those printed by pure gelatin bioink(20G,20wt%gelatin),thus successfully improve the shape fidelity and porosity of the 3D printed scaffold.The 16G/4ASFNFs scaffold also demonstrate higher swelling ratio and faster degradation rate than the pure gelatin scaffold.Moreover,the cell viability and proliferation ability of Schwann cells cultured on the 16G/4ASFNFs scaffold are significantly superior than those cultured on the pure 20G scaffold.The ASFNFs enhanced 16G/4ASFNFs scaffold reported here are expected to be a candidate with excellent potential for biomedical applications.展开更多
Bone tissue with strong adaptability is often in a complex dynamical microenvironment in vivo,which is associated with the pathogenesis and treatment of orthopedic diseases.Therefore,it is of great significance to inv...Bone tissue with strong adaptability is often in a complex dynamical microenvironment in vivo,which is associated with the pathogenesis and treatment of orthopedic diseases.Therefore,it is of great significance to investigate the effects of corresponding compound stimulation on cell behaviors.Herein,a fluid shear stress(FSS)plus ultrasound stimulation platform suitable for cell studies based on a microfluidic chip was constructed and bone marrow mesenchymal stem cell(BMSC)was chosen as a model cell.The proliferation and osteogenesis of BMSCs under the compound stimulation of FSS plus ultrasound in growth medium without any soluble induction factors were firstly investigated.Single FSS stimulation and static culture conditions were also examined.Results illustrated that suitable single FSS stimulation(about 0.06 dyn/cm^(2))could significantly enhance cell proliferation and osteogenesis simultaneously when compared to the static control,while greater FSS mitigated or even restricted these enhancing effects.Interestingly,ultrasound stimulation combined with this suitable FSS stimulation further accelerated cell proliferation as the intensity of ultrasound increasing.As for the osteogenesis under compound stimulation,it was relatively restricted under lower ultrasound intensity(about 0.075W/cm^(2)),while promoted when the intensity became higher(about 1.75W/cm^(2)).This study suggests that both the cell proliferation and osteogenesis are very responsive to the magnitudes of FSS and ultrasound stimulations and can be both significantly enhanced by proper combination strategies.Moreover,these findings will provide valuable references for the construction of effective cell bioreactors and also the treatment of orthopedic diseases.展开更多
Memristors integrated with low operating voltage,good stability,and environmental benignity play an important role in data storage and logical circuit technology,but their fabrication still faces challenges.This study...Memristors integrated with low operating voltage,good stability,and environmental benignity play an important role in data storage and logical circuit technology,but their fabrication still faces challenges.This study reports an ultra-thin bio-memristor based on pristine environmentfriendly silk nanofibrils(SNFs).The intrinsic ionic conductivity,combined with high dielectric performance and nanoscale thickness,lowers the operation voltage down to0.1-0.2 V,and enables stable switching and retention time over 180 times and 10^(5)s,respectively.Furthermore,the SNFbased memristor device in a crossbar array achieves stable memristive performance,and thus realizes the functions of memorizing image and logic operation.By carrying out variable-temperature electrical experiments and Kelvin probe force microscopy,the space charge-limited conduction mechanism is revealed.Integrating with low operating voltage,good stability,and ultra-thin thickness makes the SNF-based memristors excellent candidates in bioelectronics.展开更多
Conjugated organic polymer(COP)-based electrochromic devices(ECDs)exhibit promising applications in digital and color displays.However,fabricating COP-based ECDs integrated with excellent electrochromic performance,cu...Conjugated organic polymer(COP)-based electrochromic devices(ECDs)exhibit promising applications in digital and color displays.However,fabricating COP-based ECDs integrated with excellent electrochromic performance,customized patterns,and flexibility remains challenging.In this study,we report inkjet-printed,flexible,and patterned ECDs based on two-dimensional(2 D)polyaniline(PANI)sheets,which are evenly dispersed in formic acid(FA)enabling high-precision,stable inkjet printing.The pristine lamellar structure of PANI sheets,which combine nanoscale thickness and an appropriate doping ratio,and the additive-free ink composition endow the printed PANI electrodes and ECDs with high performance.The fabricated PANI electrode exhibits a high optical contrast(76%at a wavelength of 750 nm),a good coloration efficiency(CE)of 259.1 cm^(2) C^(-1),and a short coloration/bleaching time(1.8/2.4 s),simultaneously integrated with pseudocapacitance and mechanical flexibility.Moreover,the 2 D lamellar PANI ink developed in this study can be printed into various designed patterns,particularly for electrochemically controlled,addressable electrochromic displays.This work highlights 2 D lamellar PANI as a promising electrochromic material for flexible and patterned ECDs.展开更多
Due to the innate extracellular matrix mimicking features,fibrous materials exhibited great application potential in biomedicine.In developing excellent fibrous biomaterial,it is essential to reveal the corresponding ...Due to the innate extracellular matrix mimicking features,fibrous materials exhibited great application potential in biomedicine.In developing excellent fibrous biomaterial,it is essential to reveal the corresponding inherent fiber features’effects on cell behaviors.Due to the inevitable‘interference’cell adhesions to the background or between adjacent fibers,it is difficult to precisely reveal the inherent fiber diameter effect on cell behaviors by using a traditional fiber mat.A single-layer and parallel-arranged polycaprolactone fiber pattern platform with an excellent non-fouling background is designed and constructed herein.In this unique material platform,the‘interference’cell adhesions through interspace between fibers to the environment could be effectively ruled out by the non-fouling background.The‘interference’cell adhesions between adjacent fibers could also be excluded from the sparsely arranged(SA)fiber patterns.The influence of fiber diameter on stem cell behaviors is precisely and comprehensively investigated based on eliminating the undesired‘interference’cell adhesions in a controllable way.On the SA fiber patterns,small diameter fiber(SA-D1,D1 means 1μm in diameter)may seriously restrict cell proliferation and osteogenesis when compared to the middle(SA-D8)and large(SA-D56)ones and SA-D8 shows the optimal osteogenesis enhancement effect.At the same time,the cells present similar proliferation ability and even the highest osteogenic ability on the densely arranged(DA)fiber patterns with small diameter fiber(DA-D1)when compared to the middle(DA-D8)and large(DA-D56)ones.The‘interference’cell adhesion between adjacent fibers under dense fiber arrangement may be the main reason for inducing these different cell behavior trends along with fiber diameters.Related results and comparisons have illustrated the effects of fiber diameter on stem cell behaviors more precisely and objectively,thus providing valuable reference and guidance for developing effective fibrous biomaterials.展开更多
Utilizing MXene to form the multifunctional derivative is a route to construct high-performance electrode materials.To address this issue,V_(2)CT_(x) MXene was employed to realize a derivative of VOx/V_(2)CT_(x) MXene...Utilizing MXene to form the multifunctional derivative is a route to construct high-performance electrode materials.To address this issue,V_(2)CT_(x) MXene was employed to realize a derivative of VOx/V_(2)CT_(x) MXene via a partial oxidation process.Relying on the annealing in the air atmosphere,the controlled oxidation behavior transformed V_(2)CT_(x) MXene partially to V_(2)O_(5) and formed a derivative hybrid of V_(2)O_(5)/V_(2)CT_(x) MXene.As a result,a package of capacity,rate performance,and cyclability can be enhanced.This work explores the derived behavior of MXenes and provides a route for constructing the hybrid with less interface contact.Furthermore,these findings can be extended to other MXene materials.展开更多
As a well-known natural protein biomaterial,silk fibroin(SF)has shown broad application prospects in typical biomedical fields.However,the mostly used SF from Bombyx mori silkworm lacks specific cell adhesion sites an...As a well-known natural protein biomaterial,silk fibroin(SF)has shown broad application prospects in typical biomedical fields.However,the mostly used SF from Bombyx mori silkworm lacks specific cell adhesion sites and other bioactive peptide sequences,and there is still significant room for further improvement of their biological functions.Therefore,it is crucial to develop a facile and effective modification strategy for this widely researched biomaterial.In this study,the SF electrospun scaffold has been chosen as a typical SF biomaterial,and air plasma etching has been adopted as a facile nanopattern modification strategy to promote its biological functions.Results demonstrated that the plasma etching could feasibly and effectively create nano-island-like patterns on the complex surface of SF scaffolds,and the detailed nanopattern features could be easily regulated by adjusting the etching time.In addition,the mesenchymal stem cell responses have illustrated that the nanopattern modification could significantly regulate corresponding cell behaviors.Compared with the non-etched scaffold,the 10min-etched scaffolds(10E scaffold)significantly promoted stem cell proliferation and osteogenic differentiation.Moreover,10E scaffold has also been confirmed to effectively accelerate vascularization and ectopic osteogenesis in vivo using a rat subcutaneous implantation model.However,the mentioned promoting effects would be weakened or even counteracted with the increase of etching time.In conclusion,this facile modification strategy demonstrated great application potential for promoting cell proliferation and differentiation.Thus,it provided useful guidance to develop excellent SF-based scaffolds suitable for bone and other tissue engineering.展开更多
基金financial support provided by the National Natural Science Foundation of China(No.51932005)Liao Ning Revitalization Talents Program(XLYC1807175)+4 种基金the Joint Research Fund Liaoning Shenyang National Laboratory for Materials Science(SYNL)(20180510047)the Research Fund of SYNL(L2019F38)the Youth Innovation Promotion Association CAS(2015152)the Program for the Development of Science and Technology of Jilin Province(No.20190201309JC)the Project of Development and Reform Commission of Jilin Province(No.2019C042-1)。
文摘Although MXenes is highly attractive as anode materials of lithium ion batteries,it sets a bottleneck for higher capacity of the V2CTxMXene due to the limited interlayer space and the derived surface terminations.Herein,the cation intercalation and ion-exchange were well employed to achieve a K+and Ca2+intercalated V2CTxMXene.A larger interlayer distance and low F surface terminations were thereof obtained,which accelerates the ion transport and promotes the delicate surface of V2CTx MXene.As a result,a package of enhanced capacity,rate performance and cyclability can be achieved.Furthermore,the ion exchange approach can be extended to other 2 D layered materials,and both the interlayer control and the surface modification will be achieved.
基金sponsored by the National Key Research and Development Program of China(2016YFA0201700,2016YFA0201702)the Fundamental Research Funds for the Central Universities(2232019A3-06,2232019D3-02)+2 种基金the National Key Research and Development Program of China(2018YFC1105800)the National Natural Science Foundation of China(21674018,51903045)the Shanghai Belt and Road Joint Laboratory of Advanced Fiber and Low-Dimension Materials(18520750400).
文摘Fluorescent silk is fundamentally important for the development of future tissue engineering scaffolds.Despite great progress in the preparation of a variety of colored silks,fluorescent silk with enhanced mechanical properties has yet to be explored.In this study,we report on the fabrication of intrinsically super-strong fluorescent silk by feeding Bombyx mori silkworm carbon nanodots(CNDs).The CNDs were incorporated into silk fibroin,hindering the conformation transformation,confining crystallization,and inducing orientation of mesophase.The resultant silk exhibited super-strong mechanical properties with breaking strength of 521.9±82.7 MPa and breaking elongation of 19.2±4.3%,improvements of 55.1%and 53.6%,respectively,in comparison with regular silk.The CNDs-reinforced silk displayed intrinsic blue fluorescence when exposed to 405 nm laser and exhibited no cytotoxic effect on cells,suggesting that multi-functional silks would be potentially useful in bioimaging and other applications.
基金financially supported by the National Natural Science Foundation of China (Nos.21601029, 21601030)the Open Project Program of the State Key Laboratory of Inorganic Synthesis and Preparative Chemistry (Nos.2017-33, 2017-26)the Fundamental Research Funds for the Central Universities of China (No.N180503012)。
文摘MXene is a rising star of two-dimensional(2D)materials for energy relative applications,however,the traditional synthesis of MXene etched by hazard HF acid or LiF+HCl mixed solution is highly dangerous with the risk of splashing or pouring liquid solutions.In this work,we developed a water-free ionothermal synthesis of 2D Ti3C2 MXene via etching pristine Ti3AlC2 MAX in low-cost choline chloride and oxalic acid based deep eutectic solvents(DES)with the presence of NH4F,thus it was highly safe and convenient to operate solid precursor and product materials at room temperature.Benefited from the low vapor pressure and solvating properties of DES,the prepared Ti3C2(denoted as DES-Ti3C2)possessed a high purity up to 98% compared with 95% for HF etched Ti3C2(denoted as HF-Ti3C2).Notably,an expanded interlayer spacing of 1.35 nm could be achieved due to the intercalation of choline cations in DES-Ti3C2,larger than that of HF-Ti3C2(0.98 nm).As a result,the DES-Ti3C2 anodes exhibited enhanced lithium storage performance,such as high reversible capacity of 208 m Ah g-1at 0.5 A g-1,and long cycle life over 400 times,outperforming most reported pure MXene anodes.The ionothermal synthesis of MXene developed here may pave a new way to safely prepare other MXene for various energy relating applications.
基金supported by Shanghai Rising-Star Program(22QA1400400)the Basic Research Project of the Science and Technology Commission of Shanghai Municipality(21JC1400100)+1 种基金the National Natural Science Foundation of China(52173031)the Oriental Talent Plan(Leading Talent Program,152)。
文摘Constructing an artificial intelligence interactive system is still challenging due to the lack of an integrated artificial sensing and processing system with high performance.In this work,an artificial tactile perception system with integrated sensing,storage,and computing functions is designed based on silk fibroin composite memristors and piezoresistive pressure sensors.The sensors based on polydimethylsiloxane/silver nanowires can sense the external pressure stimulation with fast response speed.In addition,the composite memristor based on silk fibroin possesses good cyclic stability and synaptic plasticity simulation and acts as an artificial synapse to process tactile information.As a result,the integrated tactile perception system realizes the perception,storage,and processing of pressure information,demonstrating the possibility to simulate the biological tactile perception nervous system.This type of system may promote potential applications in artificial intelligence,such as autonomous driving,wearable,flexible electronic devices,and bionic robots.
基金supported by the National Natural Science Foundation of China(31971263,52173031,52273125)the International Cooperation Fund of the Science and Technology Commission of Shanghai Municipality(22520711900)+1 种基金the Basic Research Project of the Science and Technology Commission of Shanghai Municipality(21JC1400100)the Oriental Talent Plan(Leading Talent Program,No.152).
文摘Acute liver failure(ALF)has a mortality rate of more than 40%.Currently,orthotopic liver transplantation is the sole clinical treatment for ALF,but its wide usage is severely limited due to donor shortage and immunological rejection.An emerging and promising technology for ALF treatment is liver tissue engineering(LTE),wherein porous scaffolds serve as a crucial component.Nanofiber scaffolds,which mimic the inherent structures of fibrous extracellular matrix well,provide an ideal environment for cell growth and tissue regeneration.Recently,several functional nanofiber scaffolds for LTE have been developed,which show impressive results in regulating cell function and repairing liver injury when combined with appropriate seeding cells and/or growth factors.This review firstly introduces the etiologies and treatment indicators of ALF.Subsequently,typical fabrication technologies of nanofiber scaffolds and their related applications for function regulation of liver-related cells and treatment of ALF are comprehensively summarized.Particular emphasis is placed on the strategies involving an appropriate combination of suitable seeding cells and growth factors.Finally,the current challenges and the future research and development prospects of nanofiber scaffold-based LTE are discussed.This review will serve as a valuable reference for designing and modifying novel nanofiber scaffolds,further promoting their potential application in LTE and other biomedical fields.
基金financial support from the National Natural Science Foundation of China (NSFC) (Nos. 21788102, 21722603 and 21871083)Project supported by Shanghai Municipal Science and Technology Major Project (No. 2018SHZDZX03)+2 种基金the Innovation Program of Shanghai Municipal Education Commission (No. 2017-01-07-00-02-E00010)State Key Laboratory for Modification of Chemical Fibers and Polymer Materials (No. KF1803)Donghua University and the Fundamental Research Funds (No. KF1803) for the Central Universities
文摘Pure organic room temperature phosphorescence(RTP) has been attracting a lot interest recently. So far,many strategies have succeeded in achieving efficient organic RTP materials by increasing the rate of intersystem crossing(ISC) and suppressing non-radiative transitions. In supramolecular chemistry, the control and regulation of molecular recognition based on the role of the host and vip in supramolecular polymers matrix, has attracted much attention. Recently, researchers have successfully achieved room temperature phosphorescence of pure organic complexes through host-vip interactions. The host molecule specifically includes the phosphorescent vip to reduce non-radiative transitions and enhance room temperature phosphorescence emission. This review aims to describe the developments and achievements of pure organic room temperature phosphorescence systems through the mechanism of host-vip interactions in recent years, and demonstrates the exploration and pursuit of phosphorescent materials of researchers in different fields.
基金This work was supported by the Natural Science Foundation of Shanghai(20ZR1402400)the National Natural Science Foundation of China(52173031,51903045,51703033)+4 种基金the Program of Shanghai Academic/Technology Research Leader(20XD1400100)the National Key Research and Development Program of China(2020YFC1910303,2018YFC1105800)the Basic Research Project of the Science and Technology Commission of Shanghai Municipality(21JC1400100)the Fundamental Research Funds for the Central Universities(2232020D-04,2232019A3-06,2232019D3-02)the Science and Technology Commission of Shanghai Municipality(20DZ2254900).
文摘Gelatin(G)is a commonly used natural biomaterial owing to its good biocompatibility and easy availability.However,using pure gelatin as a bioink can barely achieve an ideal shape fidelity in 3D printing.In this study,Antheraea pernyi silk fibroin nanofibers(ASFNFs)with arginine-glycine-aspartic acid(RGD)peptide and partial natural silk structure are extracted and combined with pure gelatin bioink to simultaneously improve the shape fidelity and cytocompatibility of corresponding 3D printed scaffold.Results show that the optimum printing temperature is 30℃ for these bioinks.The printed filaments using 16G/4ASFNFs bioink(16wt%gelatin and 4wt%ASFNFs)demonstrate better morphology and larger pore size than those printed by pure gelatin bioink(20G,20wt%gelatin),thus successfully improve the shape fidelity and porosity of the 3D printed scaffold.The 16G/4ASFNFs scaffold also demonstrate higher swelling ratio and faster degradation rate than the pure gelatin scaffold.Moreover,the cell viability and proliferation ability of Schwann cells cultured on the 16G/4ASFNFs scaffold are significantly superior than those cultured on the pure 20G scaffold.The ASFNFs enhanced 16G/4ASFNFs scaffold reported here are expected to be a candidate with excellent potential for biomedical applications.
基金supported by the National Key Research and Development Program of China(2018YFC1105800,2018YFC1105801)the Program of Shanghai Academic/Technology Research Leader(20XD1400100)+4 种基金the Natural Science Foundation of Shanghai(20ZR1402400)the National Natural Science Foundation of China(51703033,52173031,51903045)the Basic Research Project of the Science and Technology Commission of Shanghai Municipality(21JC1400100)the International Cooperation Fund of the Science and Technology Commission of Shanghai Municipality(19520744500)the Fundamental Research Funds for the Central Universities(2232020D-04,2232019A3-06,2232019D3-02).
文摘Bone tissue with strong adaptability is often in a complex dynamical microenvironment in vivo,which is associated with the pathogenesis and treatment of orthopedic diseases.Therefore,it is of great significance to investigate the effects of corresponding compound stimulation on cell behaviors.Herein,a fluid shear stress(FSS)plus ultrasound stimulation platform suitable for cell studies based on a microfluidic chip was constructed and bone marrow mesenchymal stem cell(BMSC)was chosen as a model cell.The proliferation and osteogenesis of BMSCs under the compound stimulation of FSS plus ultrasound in growth medium without any soluble induction factors were firstly investigated.Single FSS stimulation and static culture conditions were also examined.Results illustrated that suitable single FSS stimulation(about 0.06 dyn/cm^(2))could significantly enhance cell proliferation and osteogenesis simultaneously when compared to the static control,while greater FSS mitigated or even restricted these enhancing effects.Interestingly,ultrasound stimulation combined with this suitable FSS stimulation further accelerated cell proliferation as the intensity of ultrasound increasing.As for the osteogenesis under compound stimulation,it was relatively restricted under lower ultrasound intensity(about 0.075W/cm^(2)),while promoted when the intensity became higher(about 1.75W/cm^(2)).This study suggests that both the cell proliferation and osteogenesis are very responsive to the magnitudes of FSS and ultrasound stimulations and can be both significantly enhanced by proper combination strategies.Moreover,these findings will provide valuable references for the construction of effective cell bioreactors and also the treatment of orthopedic diseases.
基金supported by the National Natural Science Foundation of China(51903045 and 52173031)the International Cooperation Fund of the Science and Technology Commission of Shanghai Municipality(19520744500)+3 种基金the Basic Research Project of the Science and Technology Commission of Shanghai Municipality(21JC1400100)Shanghai Rising-Star Program(22QA1400400)the Program of Shanghai Academic/Technology Research Leader(20XD1400100)the Fundamental Research Funds for the Central Universities and Graduate Student Innovation Fund of Donghua University(CUSF-DH-D-2020049)。
文摘Memristors integrated with low operating voltage,good stability,and environmental benignity play an important role in data storage and logical circuit technology,but their fabrication still faces challenges.This study reports an ultra-thin bio-memristor based on pristine environmentfriendly silk nanofibrils(SNFs).The intrinsic ionic conductivity,combined with high dielectric performance and nanoscale thickness,lowers the operation voltage down to0.1-0.2 V,and enables stable switching and retention time over 180 times and 10^(5)s,respectively.Furthermore,the SNFbased memristor device in a crossbar array achieves stable memristive performance,and thus realizes the functions of memorizing image and logic operation.By carrying out variable-temperature electrical experiments and Kelvin probe force microscopy,the space charge-limited conduction mechanism is revealed.Integrating with low operating voltage,good stability,and ultra-thin thickness makes the SNF-based memristors excellent candidates in bioelectronics.
基金supported by the International Cooperation Fund of the Science and Technology Commission of Shanghai(19520744500)the National Natural Science Foundation of China(51903045 and 52173031)+3 种基金the Program of Shanghai Academic/Technology Research Leader(20XD1400100)the Basic Research Project of the Science and Technology Commission of Shanghai(21JC1400100)the Fundamental Research Funds for the Central UniversitiesGraduate Student Innovation Fund of Donghua University(CUSF-DH-D-2020048)。
文摘Conjugated organic polymer(COP)-based electrochromic devices(ECDs)exhibit promising applications in digital and color displays.However,fabricating COP-based ECDs integrated with excellent electrochromic performance,customized patterns,and flexibility remains challenging.In this study,we report inkjet-printed,flexible,and patterned ECDs based on two-dimensional(2 D)polyaniline(PANI)sheets,which are evenly dispersed in formic acid(FA)enabling high-precision,stable inkjet printing.The pristine lamellar structure of PANI sheets,which combine nanoscale thickness and an appropriate doping ratio,and the additive-free ink composition endow the printed PANI electrodes and ECDs with high performance.The fabricated PANI electrode exhibits a high optical contrast(76%at a wavelength of 750 nm),a good coloration efficiency(CE)of 259.1 cm^(2) C^(-1),and a short coloration/bleaching time(1.8/2.4 s),simultaneously integrated with pseudocapacitance and mechanical flexibility.Moreover,the 2 D lamellar PANI ink developed in this study can be printed into various designed patterns,particularly for electrochemically controlled,addressable electrochromic displays.This work highlights 2 D lamellar PANI as a promising electrochromic material for flexible and patterned ECDs.
基金sponsored by the Natural Science Foundation of Shanghai(20ZR1402400)the Fundamental Research Funds for the Central Universities(2232020D-04)+2 种基金the National Natural Science Foundation of China(52273125,52173031 and 51903045)the Science and Technology Commission of Shanghai Municipality(20XD1400100,22520711900 and 21JC1400100)the Fundamental Research Funds for the Central Universities(2232019A3-06 and 2232019D3-02).
文摘Due to the innate extracellular matrix mimicking features,fibrous materials exhibited great application potential in biomedicine.In developing excellent fibrous biomaterial,it is essential to reveal the corresponding inherent fiber features’effects on cell behaviors.Due to the inevitable‘interference’cell adhesions to the background or between adjacent fibers,it is difficult to precisely reveal the inherent fiber diameter effect on cell behaviors by using a traditional fiber mat.A single-layer and parallel-arranged polycaprolactone fiber pattern platform with an excellent non-fouling background is designed and constructed herein.In this unique material platform,the‘interference’cell adhesions through interspace between fibers to the environment could be effectively ruled out by the non-fouling background.The‘interference’cell adhesions between adjacent fibers could also be excluded from the sparsely arranged(SA)fiber patterns.The influence of fiber diameter on stem cell behaviors is precisely and comprehensively investigated based on eliminating the undesired‘interference’cell adhesions in a controllable way.On the SA fiber patterns,small diameter fiber(SA-D1,D1 means 1μm in diameter)may seriously restrict cell proliferation and osteogenesis when compared to the middle(SA-D8)and large(SA-D56)ones and SA-D8 shows the optimal osteogenesis enhancement effect.At the same time,the cells present similar proliferation ability and even the highest osteogenic ability on the densely arranged(DA)fiber patterns with small diameter fiber(DA-D1)when compared to the middle(DA-D8)and large(DA-D56)ones.The‘interference’cell adhesion between adjacent fibers under dense fiber arrangement may be the main reason for inducing these different cell behavior trends along with fiber diameters.Related results and comparisons have illustrated the effects of fiber diameter on stem cell behaviors more precisely and objectively,thus providing valuable reference and guidance for developing effective fibrous biomaterials.
基金support provided by the National Natural Science Foundation of China (grant No.51932005)Liao Ning Revitalization Talents Program (grant No.XLYC1807175)the Research Fund of SYNL,the Science and Technology Research Project of Education Department of jilin Province (grant Nos.JKH20210453KJ,JKH20210449KJ).
文摘Utilizing MXene to form the multifunctional derivative is a route to construct high-performance electrode materials.To address this issue,V_(2)CT_(x) MXene was employed to realize a derivative of VOx/V_(2)CT_(x) MXene via a partial oxidation process.Relying on the annealing in the air atmosphere,the controlled oxidation behavior transformed V_(2)CT_(x) MXene partially to V_(2)O_(5) and formed a derivative hybrid of V_(2)O_(5)/V_(2)CT_(x) MXene.As a result,a package of capacity,rate performance,and cyclability can be enhanced.This work explores the derived behavior of MXenes and provides a route for constructing the hybrid with less interface contact.Furthermore,these findings can be extended to other MXene materials.
基金supported by the International Cooperation Fund of the Science and Technology Commission of Shanghai Municipality(22520711900)National Natural Science Foundation of China(52273125,52173031)+2 种基金the Fundamental Research Funds for the Central Universities(2232024D-01)the Basic Research Project of the Science and Technology Commission of Shanghai Municipality(21JC1400100)the Oriental Talent Plan(Leading Talent Program,no.152).
文摘As a well-known natural protein biomaterial,silk fibroin(SF)has shown broad application prospects in typical biomedical fields.However,the mostly used SF from Bombyx mori silkworm lacks specific cell adhesion sites and other bioactive peptide sequences,and there is still significant room for further improvement of their biological functions.Therefore,it is crucial to develop a facile and effective modification strategy for this widely researched biomaterial.In this study,the SF electrospun scaffold has been chosen as a typical SF biomaterial,and air plasma etching has been adopted as a facile nanopattern modification strategy to promote its biological functions.Results demonstrated that the plasma etching could feasibly and effectively create nano-island-like patterns on the complex surface of SF scaffolds,and the detailed nanopattern features could be easily regulated by adjusting the etching time.In addition,the mesenchymal stem cell responses have illustrated that the nanopattern modification could significantly regulate corresponding cell behaviors.Compared with the non-etched scaffold,the 10min-etched scaffolds(10E scaffold)significantly promoted stem cell proliferation and osteogenic differentiation.Moreover,10E scaffold has also been confirmed to effectively accelerate vascularization and ectopic osteogenesis in vivo using a rat subcutaneous implantation model.However,the mentioned promoting effects would be weakened or even counteracted with the increase of etching time.In conclusion,this facile modification strategy demonstrated great application potential for promoting cell proliferation and differentiation.Thus,it provided useful guidance to develop excellent SF-based scaffolds suitable for bone and other tissue engineering.