期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Tuning energy output of PTFE/Al composite materials through gradient structure 被引量:1
1
作者 yao-feng mao Qian-qian He +3 位作者 Jian Wang Chuan-hao Xu Jun Wang Fu-de Nie 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第8期134-142,共9页
As a typical energetic composite,polytetrafluoroethylene(PTFE)/aluminum(Al)has been widely applied in explosives,pyrotechnics,and propellants due to its ultra-high energy density and intense exothermic reaction.In thi... As a typical energetic composite,polytetrafluoroethylene(PTFE)/aluminum(Al)has been widely applied in explosives,pyrotechnics,and propellants due to its ultra-high energy density and intense exothermic reaction.In this work,the radial gradient(RG)structure of PTFE/Al cylinders with three different PTFE morphologies(200 nm and 5μm particles and 5μm fiber)and content changes are prepared by 3D printing technology.The effect of radial gradient structure on the pressure output of PTFE/Al has been studied.Compared with the morphology change of PTFE,the change of component content in the gradient structure has an obvious effect on the pressure output of the PTFE/Al cylinder.Furthermore,the relationships of the morphology,content of PTFE and the combustion reaction of the PTFE/Al cylinder reveal that the cylinder shows a more complex flame propagation process than others.These results could provide a strategy to improve the combustion and pressure output of PTFE/Al. 展开更多
关键词 PTFE/Al composite Gradient structure Radial gradient Pressure output
在线阅读 下载PDF
Fabrication of alginate-based microspheres with cellular structure for tuning ammonium dinitramide performance
2
作者 Dun-ju Wang Xu Zhou +4 位作者 yao-feng mao Xin Wang Ye-ming Huang Rui-hao Wang Da-wei Zheng 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第10期111-120,共10页
Recently,an emerging category green of energetic material ammonium dinitramide(ADN)has exhibited promising application in propellants due to its outstanding merits in energy release and environmental friendliness.It c... Recently,an emerging category green of energetic material ammonium dinitramide(ADN)has exhibited promising application in propellants due to its outstanding merits in energy release and environmental friendliness.It can be considered to substitute traditional oxidizer of ammonium perchlorate(AP)in military systems and aerospace.In this paper,a novel spherical energetic composite ADN/copper alginate(CA)with a microporous structure was designed and prepared by the W/O gel emulsion method,and a desirable porous microsphere structure was obtained.Multiple characterization techniques were used to investigate the structure and properties of ADN/CA composites.The results showed that ADN crystals were homogeneously encapsulated in an alginate-gel matrix.Thermal decomposition temperature was reduced to 151.7℃compared to ADN,while the activation energy of them was reduced from 129.73 k J/mol(ADN)to 107.50 k J/mol(ADN/CA-4).In addition,as-prepared samples had lower impact and frictional sensitivity than ADN.The mechanism of sensitivity reduction and decomposition are also discussed.Constant-volume combustion tests show that peak pressure of the ADN/CA-4 achieves 253.4 k Pa and pressurization rate of 2750.4 k Pa/s.Hence,this has a promising application in improving the combustion performance and safety performance of solid propellants. 展开更多
关键词 Ammonium dinitramide Sodium alginate MICROSPHERES High reactivity Energetic materials
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部