In this study,to meet the need for accurate tidal prediction,the accuracy of global ocean tide models was assessed in the South China Sea(0°–26°N,99°–121°E).Seven tide models,namely,DTU10,EOT11 a...In this study,to meet the need for accurate tidal prediction,the accuracy of global ocean tide models was assessed in the South China Sea(0°–26°N,99°–121°E).Seven tide models,namely,DTU10,EOT11 a,FES2014,GOT4.8,HAMTIDE12,OSU12 and TPXO8,were considered.The accuracy of eight major tidal constituents(i.e.,Q1,O1,P1,K1,N2,M2,S2 and K2)were assessed for the shallow water and coastal areas based on the tidal constants derived from multi-mission satellite altimetry(TOPEX and Jason series)and tide gauge observations.The root mean square values of each constituent between satellite-derived tidal constants and tide models were found in the range of 0.72–1.90 cm in the deep ocean(depth>200 m)and 1.18–5.63 cm in shallow water area(depth<200 m).Large inter-model discrepancies were noted in the Strait of Malacca and the Taiwan Strait,which could be attributable to the complicated hydrodynamic systems and the paucity of high-quality satellite altimetry data.In coastal regions,an accuracy performance was investigated using tidal results from 37 tide gauge stations.The root sum square values were in the range of 9.35–19.11 cm,with the FES2014 model exhibiting slightly superior performance.展开更多
The contribution presents the representative research progress on global static gravity field modeling,regional geoid/quasigeoid determination,vertical datum study,as well as the theory,algorithm and software for grav...The contribution presents the representative research progress on global static gravity field modeling,regional geoid/quasigeoid determination,vertical datum study,as well as the theory,algorithm and software for gravity field study in China from 2019 to 2023,which are the highlights of the chapter 6“Progress in Earth Gravity Model and Vertical Datum”in the“2019—2023 China National Report on Geodesy”that submitted to the International Association of Geodesy(IAG).In addition,suggestions are proposed to promote the research in the fields of earth gravity field,geoid/quasigeoid and vertical datumin China according to trends of international geodesy and related disciplines.展开更多
Global uniform chart datum(CD)surface construction is the basic upon which to realize various vertical datums transformation,and is of great importance for geospatial data expression under the same vertical datum.Gene...Global uniform chart datum(CD)surface construction is the basic upon which to realize various vertical datums transformation,and is of great importance for geospatial data expression under the same vertical datum.Generally,the CD level is computed by developing the function between tidal constituents’harmonic constants and time,i.e.,the lowest astronomical tide is taken as the lowest predicted tide level by adopting the major constituents over a 19-a period.The CD surface prescribed in China is the theoretical lowest tide(TLT)and is calculated using 13 tidal constituents,i.e.,short-period(Q_(1),O_(1),P_(1),K_(1),N_(2),M_(2),S_(2),K_(2),M_(4),MS_(4)and M_(6))and long-period(Sa and Ssa)tidal constituents.Although the accuracy in determining short-period tidal constituents has improved gradually,the long-period tide has not been studied thoroughly owing to nonstationary and temporal variations.Previous studies have intended to evaluate the effect of Sa and Ssa tides in the determination of the TLT level for the purpose of determining a more accurate CD surface for the China seas and adjacent waters.Here,the parameters of long-period tidal correction and long-period tidal correction rate were treated as the effect of both Sa and Ssa on the TLT,and the TOPEX/Poseidon and Jason series satellite altimetry data ranged from October 1992 to April 2022 were adopted to analyze the contribution of long-period tidal constituents.Results showed that the average long-period correction value is 10.10 cm(range from 8.57 cm to 14.98 cm),and that the average long-period tidal contribution rate is 14.56%(range from 9.09%to 23.97%)in the China seas and adjacent waters.Finally,data from 82 tide gauge station with at least a 1-a record of hourly observations were compared with satellite-derived result.We concluded that the long-period tidal contribution should not be neglected in TLT construction.Furthermore,to reduce tidal datum uncertainty,accurate extraction of long-period tidal constituents should receive closer attentions.展开更多
Arctic absolute sea level variations were analyzed based on multi-mission satellite altimetry data and tide gauge observations for the period of 1993–2018.The range of linear absolute sea level trends were found-2.00...Arctic absolute sea level variations were analyzed based on multi-mission satellite altimetry data and tide gauge observations for the period of 1993–2018.The range of linear absolute sea level trends were found-2.00 mm/a to 6.88 mm/a excluding the central Arctic,positive trend rates were predominantly located in shallow water and coastal areas,and negative rates were located in high-latitude areas and Baffin Bay.Satellite-derived results show that the average secular absolute sea level trend was(2.53±0.42)mm/a in the Arctic region.Large differences were presented between satellite-derived and tide gauge results,which are mainly due to low satellite data coverage,uncertainties in tidal height processing and vertical land movement(VLM).The VLM rates at 11 global navigation satellite system stations around the Arctic Ocean were analyzed,among which 6 stations were tide gauge colocated,the results indicate that the absolute sea level trends after VLM corrected were of the same magnitude as satellite altimetry results.Accurately calculating VLM is the primary uncertainty in interpreting tide gauge measurements such that differences between tide gauge and satellite altimetry data are attributable generally to VLM.展开更多
基金The National Key Research and Development Program of China under contract Nos 2017YFC0306003 and 2016YFB0501703the National Natural Science Foundation of China under contract Nos 41876111,41706115 and 41806214
文摘In this study,to meet the need for accurate tidal prediction,the accuracy of global ocean tide models was assessed in the South China Sea(0°–26°N,99°–121°E).Seven tide models,namely,DTU10,EOT11 a,FES2014,GOT4.8,HAMTIDE12,OSU12 and TPXO8,were considered.The accuracy of eight major tidal constituents(i.e.,Q1,O1,P1,K1,N2,M2,S2 and K2)were assessed for the shallow water and coastal areas based on the tidal constants derived from multi-mission satellite altimetry(TOPEX and Jason series)and tide gauge observations.The root mean square values of each constituent between satellite-derived tidal constants and tide models were found in the range of 0.72–1.90 cm in the deep ocean(depth>200 m)and 1.18–5.63 cm in shallow water area(depth<200 m).Large inter-model discrepancies were noted in the Strait of Malacca and the Taiwan Strait,which could be attributable to the complicated hydrodynamic systems and the paucity of high-quality satellite altimetry data.In coastal regions,an accuracy performance was investigated using tidal results from 37 tide gauge stations.The root sum square values were in the range of 9.35–19.11 cm,with the FES2014 model exhibiting slightly superior performance.
基金National Key R&D Program of China(Nos.2021YFB3900200,2021YFB3900203)。
文摘The contribution presents the representative research progress on global static gravity field modeling,regional geoid/quasigeoid determination,vertical datum study,as well as the theory,algorithm and software for gravity field study in China from 2019 to 2023,which are the highlights of the chapter 6“Progress in Earth Gravity Model and Vertical Datum”in the“2019—2023 China National Report on Geodesy”that submitted to the International Association of Geodesy(IAG).In addition,suggestions are proposed to promote the research in the fields of earth gravity field,geoid/quasigeoid and vertical datumin China according to trends of international geodesy and related disciplines.
基金The National Natural Science Foundation of China under contract No.42104035the Basic Scientific Fund for National Public Research Institutes of China under contract No.2023Q05the Natural Science Foundation of Shandong Province under contract No.ZR2020QD087.
文摘Global uniform chart datum(CD)surface construction is the basic upon which to realize various vertical datums transformation,and is of great importance for geospatial data expression under the same vertical datum.Generally,the CD level is computed by developing the function between tidal constituents’harmonic constants and time,i.e.,the lowest astronomical tide is taken as the lowest predicted tide level by adopting the major constituents over a 19-a period.The CD surface prescribed in China is the theoretical lowest tide(TLT)and is calculated using 13 tidal constituents,i.e.,short-period(Q_(1),O_(1),P_(1),K_(1),N_(2),M_(2),S_(2),K_(2),M_(4),MS_(4)and M_(6))and long-period(Sa and Ssa)tidal constituents.Although the accuracy in determining short-period tidal constituents has improved gradually,the long-period tide has not been studied thoroughly owing to nonstationary and temporal variations.Previous studies have intended to evaluate the effect of Sa and Ssa tides in the determination of the TLT level for the purpose of determining a more accurate CD surface for the China seas and adjacent waters.Here,the parameters of long-period tidal correction and long-period tidal correction rate were treated as the effect of both Sa and Ssa on the TLT,and the TOPEX/Poseidon and Jason series satellite altimetry data ranged from October 1992 to April 2022 were adopted to analyze the contribution of long-period tidal constituents.Results showed that the average long-period correction value is 10.10 cm(range from 8.57 cm to 14.98 cm),and that the average long-period tidal contribution rate is 14.56%(range from 9.09%to 23.97%)in the China seas and adjacent waters.Finally,data from 82 tide gauge station with at least a 1-a record of hourly observations were compared with satellite-derived result.We concluded that the long-period tidal contribution should not be neglected in TLT construction.Furthermore,to reduce tidal datum uncertainty,accurate extraction of long-period tidal constituents should receive closer attentions.
基金The Open Fund of Key Laboratory of Marine Environmental Survey Technology and Application,Ministry of Natural Resource under contract No.MESTA-2020-B005the Shandong Provincial Natural Science Foundation under contract No.ZR2020QD087+1 种基金the National Key R&D Program of China under contract Nos 2017YFC0306003 and 2016YFB0501703the National Natural Science Foundation of China under contract Nos 42104035 and 41706115。
文摘Arctic absolute sea level variations were analyzed based on multi-mission satellite altimetry data and tide gauge observations for the period of 1993–2018.The range of linear absolute sea level trends were found-2.00 mm/a to 6.88 mm/a excluding the central Arctic,positive trend rates were predominantly located in shallow water and coastal areas,and negative rates were located in high-latitude areas and Baffin Bay.Satellite-derived results show that the average secular absolute sea level trend was(2.53±0.42)mm/a in the Arctic region.Large differences were presented between satellite-derived and tide gauge results,which are mainly due to low satellite data coverage,uncertainties in tidal height processing and vertical land movement(VLM).The VLM rates at 11 global navigation satellite system stations around the Arctic Ocean were analyzed,among which 6 stations were tide gauge colocated,the results indicate that the absolute sea level trends after VLM corrected were of the same magnitude as satellite altimetry results.Accurately calculating VLM is the primary uncertainty in interpreting tide gauge measurements such that differences between tide gauge and satellite altimetry data are attributable generally to VLM.