B2-CuZr phase reinforced amorphous alloy matrix composites has become one of the research hotspots in the field of materials science due to the“transformation-induced plasticity”phenomenon,which makes the composites...B2-CuZr phase reinforced amorphous alloy matrix composites has become one of the research hotspots in the field of materials science due to the“transformation-induced plasticity”phenomenon,which makes the composites show better macroscopic plastic deformability and obvious work-hardening behavior compared to the conventional amorphous alloy matrix composites reinforced with ductile phases.However,the in-situ metastable B2-CuZr phase tends to undergo eutectoid decomposition during solidification,and the volume fraction,size,and distribution of B2-CuZr phase are difficult to control,which limits the development and application of these materials.To date,much efforts have been made to solve the above problems through composition optimization,casting parameter tailoring,and post-processing technique.In this study,a review was given based on relevant studies,focusing on the predictive approach,reinforcing mechanism,and microstructure tailoring methods of B2-CuZr phase reinforced amorphous alloy matrix composites.The research focus and future prospects were also given for the future development of the present composite system.展开更多
Oxidation and hot corrosion behaviors at 900 ℃ of Nb-Si based ultrahigh temperature alloys were investigated. Both oxidation and hot corrosion kinetics curves of the alloy involve an initial parabolic stage and a lat...Oxidation and hot corrosion behaviors at 900 ℃ of Nb-Si based ultrahigh temperature alloys were investigated. Both oxidation and hot corrosion kinetics curves of the alloy involve an initial parabolic stage and a later rapid linear stage. In the initial oxidation stage(1-50 h), a thin and continuous scale is formed on the alloy surface, while severe pest degradation phenomenon is observed in the linear oxidation stage. Compared with oxidation of the alloy in static air, a linear hot corrosion stage happens earlier and catastrophic scale disintegration occurs after hot corrosion for 20-100 h, demonstrating that molten salts(Na2SO4 and NaCl) could significantly accelerate the oxidation process of the alloy. STEM results indicate that the corroded scale consists mainly of TiO2, Nb2O5, TiNb2O7, amorphous silicate and NaNbO3.展开更多
基金supported by the National Natural Science Foundation of China(No.52101138,No.52201075)the Natural Science Foundation of Hubei Province(No.2023AFB798,No.2022CFB614)+3 种基金the Shenzhen Science and Technology Program(No.JCYJ20220530160813032)the State Key Laboratory of Solidification Processing in NWPU(No.SKLSP202309,No.SKLSP202308)the Guangdong Basic and Applied Basic Research Foundation(No.2022A1515011227)the State Key Laboratory of Powder Metallurgy of Central South University(No.SklpmKF-05)。
文摘B2-CuZr phase reinforced amorphous alloy matrix composites has become one of the research hotspots in the field of materials science due to the“transformation-induced plasticity”phenomenon,which makes the composites show better macroscopic plastic deformability and obvious work-hardening behavior compared to the conventional amorphous alloy matrix composites reinforced with ductile phases.However,the in-situ metastable B2-CuZr phase tends to undergo eutectoid decomposition during solidification,and the volume fraction,size,and distribution of B2-CuZr phase are difficult to control,which limits the development and application of these materials.To date,much efforts have been made to solve the above problems through composition optimization,casting parameter tailoring,and post-processing technique.In this study,a review was given based on relevant studies,focusing on the predictive approach,reinforcing mechanism,and microstructure tailoring methods of B2-CuZr phase reinforced amorphous alloy matrix composites.The research focus and future prospects were also given for the future development of the present composite system.
基金The authors are grateful for the financial supports from the National Natural Science Foundation of China(51971181,51971177)the National Key R&D Program of China(2017YFB0702903).
文摘Oxidation and hot corrosion behaviors at 900 ℃ of Nb-Si based ultrahigh temperature alloys were investigated. Both oxidation and hot corrosion kinetics curves of the alloy involve an initial parabolic stage and a later rapid linear stage. In the initial oxidation stage(1-50 h), a thin and continuous scale is formed on the alloy surface, while severe pest degradation phenomenon is observed in the linear oxidation stage. Compared with oxidation of the alloy in static air, a linear hot corrosion stage happens earlier and catastrophic scale disintegration occurs after hot corrosion for 20-100 h, demonstrating that molten salts(Na2SO4 and NaCl) could significantly accelerate the oxidation process of the alloy. STEM results indicate that the corroded scale consists mainly of TiO2, Nb2O5, TiNb2O7, amorphous silicate and NaNbO3.