Oil and gas pipeline networks are a key link in the coordinated development of oil and gas both upstream and downstream.To improve the reliability and safety of the oil and gas pipeline network, inspections are implem...Oil and gas pipeline networks are a key link in the coordinated development of oil and gas both upstream and downstream.To improve the reliability and safety of the oil and gas pipeline network, inspections are implemented to minimize the risk of leakage, spill and theft, as well as documenting actual incidents. In recent years, unmanned aerial vehicles have been recognized as a promising option for inspection due to their high efficiency. However, the integrated optimization of unmanned aerial vehicle inspection for oil and gas pipeline networks, including physical feasibility, the performance of mission, cooperation, real-time implementation and three-dimensional(3-D) space, is a strategic problem due to its large-scale,complexity as well as the need for efficiency. In this work, a novel mixed-integer nonlinear programming model is proposed that takes into account the constraints of the mission scenario and the safety performance of unmanned aerial vehicles. To minimize the total length of the inspection path, the model is solved by a two-stage solution method. Finally, a virtual pipeline network and a practical pipeline network are set as two examples to demonstrate the performance of the optimization schemes. Moreover, compared with the traditional genetic algorithm and simulated annealing algorithm, the self-adaptive genetic simulated annealing algorithm proposed in this paper provides strong stability.展开更多
This paper addresses the decentralized consensus problem for a system of multiple dynamic agents with remote controllers via networking,known as a networked control multi-agent system(NCMAS).It presents a challenging ...This paper addresses the decentralized consensus problem for a system of multiple dynamic agents with remote controllers via networking,known as a networked control multi-agent system(NCMAS).It presents a challenging scenario where partial dynamic entities or remote control units are vulnerable to disclosure attacks,making them potentially malicious.To tackle this issue,we propose a secure decentralized control design approach employing a double-layer cryptographic strategy.This approach not only ensures that the input and output information of the benign entities remains protected from the malicious entities but also practically achieves consensus performance.The paper provides an explicit design,supported by theoretical proof and numerical verification,covering stability,steady-state error,and the prevention of computation overflow or underflow.展开更多
In this paper, we study the output regulation problem of discrete linear time-delay systems by output feedback control. We have established some results parallel to those for the output regulation problem of continuou...In this paper, we study the output regulation problem of discrete linear time-delay systems by output feedback control. We have established some results parallel to those for the output regulation problem of continuous linear time-delay systems.展开更多
基金part of the Program of "Study on Optimization and Supply-side Reliability of Oil Product Supply Chain Logistics System" funded under the National Natural Science Foundation of China, Grant Number 51874325
文摘Oil and gas pipeline networks are a key link in the coordinated development of oil and gas both upstream and downstream.To improve the reliability and safety of the oil and gas pipeline network, inspections are implemented to minimize the risk of leakage, spill and theft, as well as documenting actual incidents. In recent years, unmanned aerial vehicles have been recognized as a promising option for inspection due to their high efficiency. However, the integrated optimization of unmanned aerial vehicle inspection for oil and gas pipeline networks, including physical feasibility, the performance of mission, cooperation, real-time implementation and three-dimensional(3-D) space, is a strategic problem due to its large-scale,complexity as well as the need for efficiency. In this work, a novel mixed-integer nonlinear programming model is proposed that takes into account the constraints of the mission scenario and the safety performance of unmanned aerial vehicles. To minimize the total length of the inspection path, the model is solved by a two-stage solution method. Finally, a virtual pipeline network and a practical pipeline network are set as two examples to demonstrate the performance of the optimization schemes. Moreover, compared with the traditional genetic algorithm and simulated annealing algorithm, the self-adaptive genetic simulated annealing algorithm proposed in this paper provides strong stability.
文摘This paper addresses the decentralized consensus problem for a system of multiple dynamic agents with remote controllers via networking,known as a networked control multi-agent system(NCMAS).It presents a challenging scenario where partial dynamic entities or remote control units are vulnerable to disclosure attacks,making them potentially malicious.To tackle this issue,we propose a secure decentralized control design approach employing a double-layer cryptographic strategy.This approach not only ensures that the input and output information of the benign entities remains protected from the malicious entities but also practically achieves consensus performance.The paper provides an explicit design,supported by theoretical proof and numerical verification,covering stability,steady-state error,and the prevention of computation overflow or underflow.
基金This work was supported in part by the Research Grants Council of the Hong Kong Special Administration Region (No. 412813) and in part by the National Natural Science Foundation of China (No. 611 74049).
文摘In this paper, we study the output regulation problem of discrete linear time-delay systems by output feedback control. We have established some results parallel to those for the output regulation problem of continuous linear time-delay systems.