The increasing shortage of fossil resources and environmental pollution has renewed interest in the synthesis of value-added biochemicals from methanol.However,most of native or synthetic methylotrophs are unable to a...The increasing shortage of fossil resources and environmental pollution has renewed interest in the synthesis of value-added biochemicals from methanol.However,most of native or synthetic methylotrophs are unable to assimilate methanol at a sufficient rate to produce biochemicals.Thus,the performance of methylotrophs still needs to be optimized to meet the demands of industrial applications.In this review,we provide an in-depth discussion on the properties of natural and synthetic methylotrophs,and summarize the natural and synthetic methanol assimilation pathways.Further,we discuss metabolic engineering strategies for enabling microbial utilization of methanol for the bioproduction of value-added chemicals.Finally,we highlight the potential of microbial engineering for methanol assimilation and offer guidance for achieving a low-carbon footprint for the biosynthesis of chemicals.展开更多
基金supported by the National Natural Science Founda-tion of China(22122806 and 22038005)the Major Project of Natu-ral Science Foundation of Jiangsu Province(BK20212013)+1 种基金the Provin-cial Outstanding Youth Foundation of Jiangsu Province(BK20211529)the Fundamental Research Funds for the Central Universities(JUSRP22031).
文摘The increasing shortage of fossil resources and environmental pollution has renewed interest in the synthesis of value-added biochemicals from methanol.However,most of native or synthetic methylotrophs are unable to assimilate methanol at a sufficient rate to produce biochemicals.Thus,the performance of methylotrophs still needs to be optimized to meet the demands of industrial applications.In this review,we provide an in-depth discussion on the properties of natural and synthetic methylotrophs,and summarize the natural and synthetic methanol assimilation pathways.Further,we discuss metabolic engineering strategies for enabling microbial utilization of methanol for the bioproduction of value-added chemicals.Finally,we highlight the potential of microbial engineering for methanol assimilation and offer guidance for achieving a low-carbon footprint for the biosynthesis of chemicals.