Porous silica nano-flowers(KCC-1)immobilized Pt-Pd alloy NPs(Pt-Pd/KCC-1)with different mass ratios of Pd and Pt were successfully prepared by a facile in situ one-step reduction,using hydrazinium hydroxide as a reduc...Porous silica nano-flowers(KCC-1)immobilized Pt-Pd alloy NPs(Pt-Pd/KCC-1)with different mass ratios of Pd and Pt were successfully prepared by a facile in situ one-step reduction,using hydrazinium hydroxide as a reducing agent.The as-synthesized silica nanospheres possess radial fibers with a distance of 15 nm,exhibiting a high specific surface area(443.56 m^(2)·g^(-1)).Meanwhile,the obtained Pt-Pd alloy NPs are uniformly dispersed on the silica surface with a metallic particle size of 4-6 nm,which exist as metallic Pd and Pt on the surface of monodisperse KCC-1,showing the transfer of electrons from Pd to Pt.The as-synthesized 2.5%Pt-2.5%Pd/KCC-1 exhibited excellent catalytic activity and stability for the continuous dehydrogenation of 2-methoxycyclohexanol to prepare guaiacol.Compared with Pt or Pd single metal supported catalysts,the obtained 2.5%Pt-2.5%Pd/KCC-1 shows 97.2%conversion rate of 2-methoxycyclohexanol and 76.8%selectivity for guaiacol,which attributed to the significant synergistic effect of bimetallic Pt-Pd alloy NPs.Furthermore,turn over frequency value of the obtained 2.5%Pt-2.5%Pd/KCC-1 NPs achieved 4.36 s^(-1),showing higher catalytic efficiency than other two monometallic catalysts.Reaction pathways of dehydro-aromatization of 2-methoxycyclohexanol over the obtained catalyst are proposed.Consequently,the obtained 2.5%Pt-2.5%Pd/KCC-1 NPs prove their potential in the dehydrogenation of 2-methoxycyclohexanol,while the kinetics and mechanistic study of the dehydrogenation reaction over the catalyst in a continuous fixed-bed reactor may provide valuable information for the development of green,outstanding and powerful synthetic pathway of guaiacol.展开更多
Amylose content,the key determinant of rice eating and cooking quality,is regulated primarily by the Waxy(Wx)gene.We adjusted the amylose content and transparency of semi-glutinous japonica rice carrying the Wxmp alle...Amylose content,the key determinant of rice eating and cooking quality,is regulated primarily by the Waxy(Wx)gene.We adjusted the amylose content and transparency of semi-glutinous japonica rice carrying the Wxmp allele by genome editing of upstream open reading frame 6(uORF6)of Wx.展开更多
As an open network architecture,Wireless Computing PowerNetworks(WCPN)pose newchallenges for achieving efficient and secure resource management in networks,because of issues such as insecure communication channels and...As an open network architecture,Wireless Computing PowerNetworks(WCPN)pose newchallenges for achieving efficient and secure resource management in networks,because of issues such as insecure communication channels and untrusted device terminals.Blockchain,as a shared,immutable distributed ledger,provides a secure resource management solution for WCPN.However,integrating blockchain into WCPN faces challenges like device heterogeneity,monitoring communication states,and dynamic network nature.Whereas Digital Twins(DT)can accurately maintain digital models of physical entities through real-time data updates and self-learning,enabling continuous optimization of WCPN,improving synchronization performance,ensuring real-time accuracy,and supporting smooth operation of WCPN services.In this paper,we propose a DT for blockchain-empowered WCPN architecture that guarantees real-time data transmission between physical entities and digital models.We adopt an enumeration-based optimal placement algorithm(EOPA)and an improved simulated annealing-based near-optimal placement algorithm(ISAPA)to achieve minimum average DT synchronization latency under the constraint of DT error.Numerical results show that the proposed solution in this paper outperforms benchmarks in terms of average synchronization latency.展开更多
The object of research of this paper is the DSA380 high-speed pantograph.The near-field unsteady flow around the pantograph was investigated using large eddy simulation(LES)while the far-field aerodynamic noise was an...The object of research of this paper is the DSA380 high-speed pantograph.The near-field unsteady flow around the pantograph was investigated using large eddy simulation(LES)while the far-field aerodynamic noise was analysed in the frame of the Ffowcs Williams-Hawkings(FW-H)acoustic analogy.According to the results,the contact strip,base frame and knuckle are the main aerodynamic noise sources,with vortex shedding,flow separation and recombination around the pantograph being related key physical factors.The aerodynamic noise radiates outwards in the form of spherical waves when the distance of the noise receiving point is farther than 8 m.The sound pressure level(SPL)grows approximately as the 6th power of pantograph operating speed.The aerodynamic noise energy is mainly concentrated in the region of 400-1000 Hz,and the frequency band is wider with crosswind than without crosswind.The peak frequency displays a linear relationships with the operating speed and crosswind velocity,respectively.The aerodynamic and aeroacoustic generation from the knuckle-downstream orientation of the pantograph is superior to those of the knuckle-upstream orientation model.This finding may be used for the optimal design of future pantograph configurations in the presence of crosswind.展开更多
The liquid phase oxidation of cyclohexylbenzene(CHB)is a new green synthetic approach to cyclohexylbenzene-1-hydroperoxide(CHBHP),a key intermediate for preparing phenol and cyclohexanone.In this work,aryl-substituted...The liquid phase oxidation of cyclohexylbenzene(CHB)is a new green synthetic approach to cyclohexylbenzene-1-hydroperoxide(CHBHP),a key intermediate for preparing phenol and cyclohexanone.In this work,aryl-substituted(Cl and Br)derivatives of N-hydroxyphthalimide(NHPI)were synthesized and their catalytic performances for CHB oxidation were studied.In addition,geometric optimization and transition state search were performed using DFT calculations.Both experimental and theoretical studies have proven that chloro-substitution on NHPI can significantly improve its catalytic effects on the oxidation of CHB by oxygen.Compared with NHPI,CHB conversion and selectivity of CHBHP over Cl;NHPI were increased by 10.47%and 13.24%.The strategy of aryl-substituting NHPI with halogen atoms proposed in this study would provide a potential way to the development of new NHPI-based catalysts for aerobic oxidation reactions.展开更多
The thermal decomposition process was studied by the TG–DTA analyzer. The results show that the decomposition process of sodium hydroxyethyl sulfonate consisted of three stages: the mass loss for the first, the secon...The thermal decomposition process was studied by the TG–DTA analyzer. The results show that the decomposition process of sodium hydroxyethyl sulfonate consisted of three stages: the mass loss for the first, the second and third stages may be about the groups of CH_3CH_2OH, CH_3CHO and SO_2 volatilized, respectively. The decomposition residuum of three stages was analyzed by FT-IR, and the results of FT-IR agreed with the decomposition process predicted by theoretical weight loss. The specific heat capacity of sodium hydroxyethyl sulfonate was determined by differential scanning calorimetry(DSC). The melting temperature and melting enthalpy were obtained to be 465.41 K and 25.69 kJ·mol^(-1), respectively. The molar specific heat capacity of sodium hydroxyethyl sulfonate was determinated from 310.15 K to 365.15 K and expressed as a function of temperature.展开更多
Since defects such as traps and oxygen vacancies exist in dielectrics,it is difficult to fabricate a high-performance MoS_(2)field-effect transistor(FET)using atomic layer deposition(ALD)Al_(2)O_(3)as the gate dielect...Since defects such as traps and oxygen vacancies exist in dielectrics,it is difficult to fabricate a high-performance MoS_(2)field-effect transistor(FET)using atomic layer deposition(ALD)Al_(2)O_(3)as the gate dielectric layer.In this paper,NH_(3)in situ doping,a process treatment approach during ALD growth of Al_(2)O_(3),is used to decrease these defects for better device characteristics.MoS_(2)FET has been well fabricated with this technique and the effect of different NH_(3)in situ doping sequences in the growth cycle has been investigated in detail.Compared with counterparts,those devices with NH_(3)in situ doping demonstrate obvious performance enhancements:Ion/Ioff is improved by one order of magnitude,from 1.33×10^(5)to 3.56×10^(6),the threshold voltage shifts from-0.74 V to-0.12 V and a small subthreshold swing of 105 m V/dec is achieved.The improved MoS_(2)FET performance is attributed to nitrogen doping by the introduction of NH_(3)during the Al_(2)O_(3)ALD growth process,which leads to a reduction in the surface roughness of the dielectric layer and the repair of oxygen vacancies in the Al_(2)O_(3)layer.Furthermore,the MoS_(2)FET processed by in situ NH_(3)doping after the Al and O precursor filling cycles demonstrates the best performance;this may be because the final NH_(3)doping after film growth restores more oxygen vacancies to screen more charge scattering in the MoS_(2)channel.The reported method provides a promising way to reduce charge scattering in carrier transport for high-performance MoS_(2)devices.展开更多
Based on H1-Galerkin mixed finite element method with nonconforming quasi-Wilson element, a numerical approximate scheme is established for pseudo-hyperbolic equations under arbitrary quadrilateral meshes. The corresp...Based on H1-Galerkin mixed finite element method with nonconforming quasi-Wilson element, a numerical approximate scheme is established for pseudo-hyperbolic equations under arbitrary quadrilateral meshes. The corresponding optimal order error estimate is derived by the interpolation technique instead of the generalized elliptic projection which is necessary for classical error estimates of finite element analysis.展开更多
During pipe installation,compacting soil at pipe sides causes an initial pipe deformation which is known as the"peaking"effect.However,in conventional pipe design codes,only pipe deformation caused by vertic...During pipe installation,compacting soil at pipe sides causes an initial pipe deformation which is known as the"peaking"effect.However,in conventional pipe design codes,only pipe deformation caused by vertical overburden is considered while the"peaking"effect is ignored.In this study,a full-scale test was conducted on a Grade X52 steel pipe with a diameter of 600 mm to investigate the impacts of both soil compaction and vertical overburden on pipe deformation.Soil compaction and external load were found to elongate and shorten the vertical pipe diameter,respectively.The"peaking"effect was observed during the installation procedure accompanied by the highest pipe stress measured at the pipe crown.Then,a two-dimensional finite element model was created and validated based on the calculated pipe stresses from the experimental study.A parametric study was performed thereafter to numerically study the impacts of soil water content,pipe wall thickness,compaction pressure,and lift thickness on pipe responses due to soil compaction and external load.An increase in the"peaking"effect is observed with increasing soil water content and compaction pressure,while an increase in pipe wall thickness or lift thickness would cause a decrease in the"peaking"effect.展开更多
Importance measures can be used to identify the vulnerable components in an aviation system at the early design stage.However,due to lack of knowledge or less available information on the component or system,the epist...Importance measures can be used to identify the vulnerable components in an aviation system at the early design stage.However,due to lack of knowledge or less available information on the component or system,the epistemic uncertainties may be one of the challenging issues in importance evaluation.In addition,the properties of the aircraft system,which are the fundamentals of the component importance measure,including the hierarchy,dependency,randomness,and uncertainty,should be taken into consideration.To solve these problems,this paper proposes the component Uncertainty Integrated Importance Measure(component UIIM)which considers multiple epistemic uncertainties in the complex multi-state systems.The degradation process for the components is described by a Markov model,and the system reliability model is developed using the Markov hierarchal evidential network.The concept of integrated importance measure is then extended into component UIIM to evaluate the component criticality rather than the component state change criticality,from the perspective of system performance.A case study on displacement compensation hydraulic system is presented to show the effectiveness of the proposed uncertainty importance measure.The results show that the component UIIM can be an effective method for evaluating the component criticality from system performance perspective at the system early design.展开更多
An excellent cardinality estimation can make the query optimiser produce a good execution plan.Although there are some studies on cardinality estimation,the prediction results of existing cardinality estimators are in...An excellent cardinality estimation can make the query optimiser produce a good execution plan.Although there are some studies on cardinality estimation,the prediction results of existing cardinality estimators are inaccurate and the query efficiency cannot be guaranteed as well.In particular,they are difficult to accurately obtain the complex relationships between multiple tables in complex database systems.When dealing with complex queries,the existing cardinality estimators cannot achieve good results.In this study,a novel cardinality estimator is proposed.It uses the core techniques with the BiLSTM network structure and adds the attention mechanism.First,the columns involved in the query statements in the training set are sampled and compressed into bitmaps.Then,the Word2vec model is used to embed the word vectors about the query statements.Finally,the BiLSTM network and attention mechanism are employed to deal with word vectors.The proposed model takes into consideration not only the correlation between tables but also the processing of complex predicates.Extensive experiments and the evaluation of BiLSTM-Attention Cardinality Estimator(BACE)on the IMDB datasets are conducted.The results show that the deep learning model can significantly improve the quality of cardinality estimation,which is a vital role in query optimisation for complex databases.展开更多
Background and aims:Cessation of nucleoside/nucleotide analogue(Nuc)therapy in patients with HBeAg-negative chronic hepatitis B(CHB)remains controversial.Methods:In this prospective,single-center cohort study,we recru...Background and aims:Cessation of nucleoside/nucleotide analogue(Nuc)therapy in patients with HBeAg-negative chronic hepatitis B(CHB)remains controversial.Methods:In this prospective,single-center cohort study,we recruited 45 patients with HBeAg-negative CHB from The Fifth Medical Center of Chinese People's Liberation Army General Hospital in China's Mainland.Patients were classified into a Nuc cessation group(n?27)and Nuc continuation group(n?18)and followed-up for 36 months.Nuc were stopped after being inactive for at least 4 years(normal alanine aminotransferase(ALT),undetectable hepatitis B virus(HBV)DNA),with liver fibrosisStage1(S1)and inflammationGrade(G1).Results:Within 3 years of follow-up,51.9%patients with Nuc cessation had virological relapse and 14.8%had ALT elevation,while all patients with Nuc continuation had undetectable HBV DNA and normal ALT.The rate of HBsAg loss after Nuc cessation was 22.2%compared with no seroconversion in patients with Nuc continuation.The hepatitis flare rate was 11.1%and there were no cases of hepatic decompensation after Nuc cessation.End of treatment(EOT)HBsAg,HBV RNA,and decline in HBV core-related antigen(HBcrAg)rate were predictive markers for HBsAg seroconversion at 6 months post-Nuc cessation.Conclusion:This study showed favorable HBsAg loss and low hepatitis flare rates after Nuc cessation.EOT HBsAg,HBV RNA,and decline in HBcrAg rate were predictive markers for HBsAg seroconversion at 6 months post-Nuc cessation.展开更多
On January 22,2020,China National Center for Bioinformation(CNCB)released the 2019 Novel Coronavirus Resource(2019nCoVR),an open-access information resource for the severe acute respiratory syndrome coronavirus 2(SARS...On January 22,2020,China National Center for Bioinformation(CNCB)released the 2019 Novel Coronavirus Resource(2019nCoVR),an open-access information resource for the severe acute respiratory syndrome coronavirus 2(SARS-CoV-2).2019nCoVR features a comprehensive integration of sequence and clinical information for all publicly available SARS-CoV-2 isolates,which are manually curated with value-added annotations and quality evaluated by an automated in-house pipeline.Of particular note,2019nCoVR offers systematic analyses to generate a dynamic landscape of SARS-CoV-2 genomic variations at a global scale.It provides all identified variants and their detailed statistics for each virus isolate,and congregates the quality score,functional annotation,and population frequency for each variant.Spatiotemporal change for each variant can be visualized and historical viral haplotype network maps for the course of the outbreak are also generated based on all complete and high-quality genomes available.Moreover,2019nCoVR provides a full collection of SARS-CoV-2 relevant literature on the coronavirus disease 2019(COVID-19),including published papers from PubMed as well as preprints from services such as bioRxiv and medRxiv through Europe PMC.Furthermore,by linking with relevant databases in CNCB,2019nCoVR offers data submission services for raw sequence reads and assembled genomes,and data sharing with NCBI.Collectively,SARS-CoV-2 is updated daily to collect the latest information on genome sequences,variants,haplotypes,and literature for a timely reflection,making 2019nCoVR a valuable resource for the global research community.2019nCoVR is accessible at https://bigd.big.ac.cn/ncov/.展开更多
There is a need for synthetic grafts to reconstruct large bone defects using minimal invasive surgery.Our previous study showed that incorporation of Sr into bioactive borate glass cement enhanced the osteogenic capac...There is a need for synthetic grafts to reconstruct large bone defects using minimal invasive surgery.Our previous study showed that incorporation of Sr into bioactive borate glass cement enhanced the osteogenic capacity in vivo.However,the amount of Sr in the cement to provide an optimal combination of physicochemical properties and capacity to stimulate bone regeneration and the underlying molecular mechanism of this stimulation is yet to be determined.In this study,bone cements composed of bioactive borosilicate glass particles substituted with varying amounts of Sr(0 mol%to 12 mol%SrO)were created and evaluated in vitro and in vivo.The setting time of the cement increased with Sr substitution of the glass.Upon immersion in PBS,the cement degraded and converted more slowly to HA(hydroxyapatite)with increasing Sr substitution.The released Sr2+modulated the proliferation,differentiation,and mineralization of hBMSCs(human bone marrow mesenchymal stem cells)in vitro.Osteogenic characteristics were optimally enhanced with cement(designated BG6Sr)composed of particles substituted with 6mol%SrO.When implanted in rabbit femoral condyle defects,BG6Sr cement supported better peri-implant bone formation and bone-implant contact,comparing to cements substituted with 0mol%or 9mol%SrO.The underlying mechanism is involved in the activation of Wnt/β-catenin signaling pathway in osteogenic differentiation of hBMSCs.These results indicate that BG6Sr cement has a promising combination of physicochemical properties and biological performance for minimally invasive healing of bone defects.展开更多
Pulsed gas-solid fluidized beds can effectively separate fine coal,and bubbles play an important role in creating suitable separation conditions.The present study performed statistical and image analyses of the evolut...Pulsed gas-solid fluidized beds can effectively separate fine coal,and bubbles play an important role in creating suitable separation conditions.The present study performed statistical and image analyses of the evolution of bubbles in a two-dimensional pulsed gas-solid fluidized bed using a high-speed dynamic camera.The effects of apparent gas velocity,pulsation frequency and particle size on bubble characteristics and bed expansi on were analyzed.The results indicate that,when a fluctuation freque ncy is added,the expa nsion height of the bed in creases,the effect of attachme nt to the bed wall decreases,the leading diameter and rising velocity of the bubbles both decrease and the degree of bubble deformation increases.These trends are also more obvious for fine particles.These findings dem on strate that a high density pulsed gas-solid fluidized bed can effectively combine gases and solids to produce a uniform,stable mixture.The bubble diameter and rising velocity were also simulated in the present work,and the relationship between the two was established using a fitting model with an error within 5%.This model provides an effective means of predicting bubble velocity as well as studying the distribution of the bubble phase and improving the stability of the bed density.展开更多
In recent years,government investments in implementing restrictive public policies on the treatment and discharge of effluents from the aquaculture industry have increased.Hence,efficient and cleaner methods for aquac...In recent years,government investments in implementing restrictive public policies on the treatment and discharge of effluents from the aquaculture industry have increased.Hence,efficient and cleaner methods for aquaculture production are needed.Recirculating aquaculture systems(RAS)offers water conservation by recycling the treated aquaculture water for reuse.RAS wastewater treatment using a moving bed bioreactors(MBBRs)process has been considered well suited for maintaining good water quality,thereby making fish farming more sustainable.Currently,improvements were achieved in tackling the influence of salinity,organic matter,disinfectant,and bioreactor start-up process on the MBBR performance efficiency.This review highlights an updated overview of recent development made using MBBR to treat the residual water from RAS.Precisely,nitrification and simultaneous nitrification-denitrification(SND),and other hybrid processes for nitrogen removal were elucidated.Finally,future challenges and prospects of MBBRs in RAS facilities that need to be considered were also proposed.展开更多
基金supported by Natural Science Foundation of Henan Province of China(162300410253)the Open Research Fund of State Key Laboratory of Coking Coal Exploitation and Comprehensive Utilization,China Pingmei Shen-ma Group(41040220181107-8).
文摘Porous silica nano-flowers(KCC-1)immobilized Pt-Pd alloy NPs(Pt-Pd/KCC-1)with different mass ratios of Pd and Pt were successfully prepared by a facile in situ one-step reduction,using hydrazinium hydroxide as a reducing agent.The as-synthesized silica nanospheres possess radial fibers with a distance of 15 nm,exhibiting a high specific surface area(443.56 m^(2)·g^(-1)).Meanwhile,the obtained Pt-Pd alloy NPs are uniformly dispersed on the silica surface with a metallic particle size of 4-6 nm,which exist as metallic Pd and Pt on the surface of monodisperse KCC-1,showing the transfer of electrons from Pd to Pt.The as-synthesized 2.5%Pt-2.5%Pd/KCC-1 exhibited excellent catalytic activity and stability for the continuous dehydrogenation of 2-methoxycyclohexanol to prepare guaiacol.Compared with Pt or Pd single metal supported catalysts,the obtained 2.5%Pt-2.5%Pd/KCC-1 shows 97.2%conversion rate of 2-methoxycyclohexanol and 76.8%selectivity for guaiacol,which attributed to the significant synergistic effect of bimetallic Pt-Pd alloy NPs.Furthermore,turn over frequency value of the obtained 2.5%Pt-2.5%Pd/KCC-1 NPs achieved 4.36 s^(-1),showing higher catalytic efficiency than other two monometallic catalysts.Reaction pathways of dehydro-aromatization of 2-methoxycyclohexanol over the obtained catalyst are proposed.Consequently,the obtained 2.5%Pt-2.5%Pd/KCC-1 NPs prove their potential in the dehydrogenation of 2-methoxycyclohexanol,while the kinetics and mechanistic study of the dehydrogenation reaction over the catalyst in a continuous fixed-bed reactor may provide valuable information for the development of green,outstanding and powerful synthetic pathway of guaiacol.
基金supported by the National Key Research and Development Program of China (2023YFD1200900)the Zhongshan Biological Breeding Laboratory (BM2022008-02/03)+1 种基金the Key Research and Development Projects of Jiangsu Province (BE2023355)the“JBGS”Project of Seed Industry Revitalization in Jiangsu Province (JBGS (2021)041).
文摘Amylose content,the key determinant of rice eating and cooking quality,is regulated primarily by the Waxy(Wx)gene.We adjusted the amylose content and transparency of semi-glutinous japonica rice carrying the Wxmp allele by genome editing of upstream open reading frame 6(uORF6)of Wx.
基金supported by the National Natural Science Foundation of China under Grant 62272391in part by the Key Industry Innovation Chain of Shaanxi under Grant 2021ZDLGY05-08.
文摘As an open network architecture,Wireless Computing PowerNetworks(WCPN)pose newchallenges for achieving efficient and secure resource management in networks,because of issues such as insecure communication channels and untrusted device terminals.Blockchain,as a shared,immutable distributed ledger,provides a secure resource management solution for WCPN.However,integrating blockchain into WCPN faces challenges like device heterogeneity,monitoring communication states,and dynamic network nature.Whereas Digital Twins(DT)can accurately maintain digital models of physical entities through real-time data updates and self-learning,enabling continuous optimization of WCPN,improving synchronization performance,ensuring real-time accuracy,and supporting smooth operation of WCPN services.In this paper,we propose a DT for blockchain-empowered WCPN architecture that guarantees real-time data transmission between physical entities and digital models.We adopt an enumeration-based optimal placement algorithm(EOPA)and an improved simulated annealing-based near-optimal placement algorithm(ISAPA)to achieve minimum average DT synchronization latency under the constraint of DT error.Numerical results show that the proposed solution in this paper outperforms benchmarks in terms of average synchronization latency.
基金supported in part by National Key R&D Program of China(Grant No.2016YFE0205200)High-Speed Railway Basic Research Fund Key Project of China(Grant No.U1234208)+1 种基金National Natural Science Foundation of China(Grant No.11972179,51475394)China Postdoctoral Science Foundation Grant(Grant No.2019M662201).
文摘The object of research of this paper is the DSA380 high-speed pantograph.The near-field unsteady flow around the pantograph was investigated using large eddy simulation(LES)while the far-field aerodynamic noise was analysed in the frame of the Ffowcs Williams-Hawkings(FW-H)acoustic analogy.According to the results,the contact strip,base frame and knuckle are the main aerodynamic noise sources,with vortex shedding,flow separation and recombination around the pantograph being related key physical factors.The aerodynamic noise radiates outwards in the form of spherical waves when the distance of the noise receiving point is farther than 8 m.The sound pressure level(SPL)grows approximately as the 6th power of pantograph operating speed.The aerodynamic noise energy is mainly concentrated in the region of 400-1000 Hz,and the frequency band is wider with crosswind than without crosswind.The peak frequency displays a linear relationships with the operating speed and crosswind velocity,respectively.The aerodynamic and aeroacoustic generation from the knuckle-downstream orientation of the pantograph is superior to those of the knuckle-upstream orientation model.This finding may be used for the optimal design of future pantograph configurations in the presence of crosswind.
基金financially supported by the National Natural Science Foundation of China(21706240)。
文摘The liquid phase oxidation of cyclohexylbenzene(CHB)is a new green synthetic approach to cyclohexylbenzene-1-hydroperoxide(CHBHP),a key intermediate for preparing phenol and cyclohexanone.In this work,aryl-substituted(Cl and Br)derivatives of N-hydroxyphthalimide(NHPI)were synthesized and their catalytic performances for CHB oxidation were studied.In addition,geometric optimization and transition state search were performed using DFT calculations.Both experimental and theoretical studies have proven that chloro-substitution on NHPI can significantly improve its catalytic effects on the oxidation of CHB by oxygen.Compared with NHPI,CHB conversion and selectivity of CHBHP over Cl;NHPI were increased by 10.47%and 13.24%.The strategy of aryl-substituting NHPI with halogen atoms proposed in this study would provide a potential way to the development of new NHPI-based catalysts for aerobic oxidation reactions.
文摘The thermal decomposition process was studied by the TG–DTA analyzer. The results show that the decomposition process of sodium hydroxyethyl sulfonate consisted of three stages: the mass loss for the first, the second and third stages may be about the groups of CH_3CH_2OH, CH_3CHO and SO_2 volatilized, respectively. The decomposition residuum of three stages was analyzed by FT-IR, and the results of FT-IR agreed with the decomposition process predicted by theoretical weight loss. The specific heat capacity of sodium hydroxyethyl sulfonate was determined by differential scanning calorimetry(DSC). The melting temperature and melting enthalpy were obtained to be 465.41 K and 25.69 kJ·mol^(-1), respectively. The molar specific heat capacity of sodium hydroxyethyl sulfonate was determinated from 310.15 K to 365.15 K and expressed as a function of temperature.
基金the National Natural Science Foundation of China(Grant Nos.61774168 and 11764008)the Opening Project of Key Laboratory of Microelectronic Devices&Integrated Technology,Institute of Microelectronics,Chinese Academy of Sciences。
文摘Since defects such as traps and oxygen vacancies exist in dielectrics,it is difficult to fabricate a high-performance MoS_(2)field-effect transistor(FET)using atomic layer deposition(ALD)Al_(2)O_(3)as the gate dielectric layer.In this paper,NH_(3)in situ doping,a process treatment approach during ALD growth of Al_(2)O_(3),is used to decrease these defects for better device characteristics.MoS_(2)FET has been well fabricated with this technique and the effect of different NH_(3)in situ doping sequences in the growth cycle has been investigated in detail.Compared with counterparts,those devices with NH_(3)in situ doping demonstrate obvious performance enhancements:Ion/Ioff is improved by one order of magnitude,from 1.33×10^(5)to 3.56×10^(6),the threshold voltage shifts from-0.74 V to-0.12 V and a small subthreshold swing of 105 m V/dec is achieved.The improved MoS_(2)FET performance is attributed to nitrogen doping by the introduction of NH_(3)during the Al_(2)O_(3)ALD growth process,which leads to a reduction in the surface roughness of the dielectric layer and the repair of oxygen vacancies in the Al_(2)O_(3)layer.Furthermore,the MoS_(2)FET processed by in situ NH_(3)doping after the Al and O precursor filling cycles demonstrates the best performance;this may be because the final NH_(3)doping after film growth restores more oxygen vacancies to screen more charge scattering in the MoS_(2)channel.The reported method provides a promising way to reduce charge scattering in carrier transport for high-performance MoS_(2)devices.
文摘Based on H1-Galerkin mixed finite element method with nonconforming quasi-Wilson element, a numerical approximate scheme is established for pseudo-hyperbolic equations under arbitrary quadrilateral meshes. The corresponding optimal order error estimate is derived by the interpolation technique instead of the generalized elliptic projection which is necessary for classical error estimates of finite element analysis.
基金support provided by the Natural Science and Engineering Council of Canada(Grant No.10021614)Enbridge Inc.(Grant No.10022179)University of Calgary.
文摘During pipe installation,compacting soil at pipe sides causes an initial pipe deformation which is known as the"peaking"effect.However,in conventional pipe design codes,only pipe deformation caused by vertical overburden is considered while the"peaking"effect is ignored.In this study,a full-scale test was conducted on a Grade X52 steel pipe with a diameter of 600 mm to investigate the impacts of both soil compaction and vertical overburden on pipe deformation.Soil compaction and external load were found to elongate and shorten the vertical pipe diameter,respectively.The"peaking"effect was observed during the installation procedure accompanied by the highest pipe stress measured at the pipe crown.Then,a two-dimensional finite element model was created and validated based on the calculated pipe stresses from the experimental study.A parametric study was performed thereafter to numerically study the impacts of soil water content,pipe wall thickness,compaction pressure,and lift thickness on pipe responses due to soil compaction and external load.An increase in the"peaking"effect is observed with increasing soil water content and compaction pressure,while an increase in pipe wall thickness or lift thickness would cause a decrease in the"peaking"effect.
基金the National Natural Science Foundation of China(Nos.52375036,U2233212,52272409,62303030)Beijing Municipal Natural Science Foundation-Fengtai Rail Transit Frontier Research Joint Foundation,China(No.L221008)+1 种基金the fellowship of China Postdoctoral Science Foundation(No.2022M710305)the program of China Scholarship Council(Nos.202106020106,202306020133).
文摘Importance measures can be used to identify the vulnerable components in an aviation system at the early design stage.However,due to lack of knowledge or less available information on the component or system,the epistemic uncertainties may be one of the challenging issues in importance evaluation.In addition,the properties of the aircraft system,which are the fundamentals of the component importance measure,including the hierarchy,dependency,randomness,and uncertainty,should be taken into consideration.To solve these problems,this paper proposes the component Uncertainty Integrated Importance Measure(component UIIM)which considers multiple epistemic uncertainties in the complex multi-state systems.The degradation process for the components is described by a Markov model,and the system reliability model is developed using the Markov hierarchal evidential network.The concept of integrated importance measure is then extended into component UIIM to evaluate the component criticality rather than the component state change criticality,from the perspective of system performance.A case study on displacement compensation hydraulic system is presented to show the effectiveness of the proposed uncertainty importance measure.The results show that the component UIIM can be an effective method for evaluating the component criticality from system performance perspective at the system early design.
基金supported by the National Natural Science Foundation of China under grant nos.61772091,61802035,61962006,61962038,U1802271,U2001212,and 62072311the Sichuan Science and Technology Program under grant nos.2021JDJQ0021 and 22ZDYF2680+7 种基金the CCF‐Huawei Database System Innovation Research Plan under grant no.CCF‐HuaweiDBIR2020004ADigital Media Art,Key Laboratory of Sichuan Province,Sichuan Conservatory of Music,Chengdu,China under grant no.21DMAKL02the Chengdu Major Science and Technology Innovation Project under grant no.2021‐YF08‐00156‐GXthe Chengdu Technology Innovation and Research and Development Project under grant no.2021‐YF05‐00491‐SNthe Natural Science Foundation of Guangxi under grant no.2018GXNSFDA138005the Guangdong Basic and Applied Basic Research Foundation under grant no.2020B1515120028the Science and Technology Innovation Seedling Project of Sichuan Province under grant no 2021006the College Student Innovation and Entrepreneurship Training Program of Chengdu University of Information Technology under grant nos.202110621179 and 202110621186.
文摘An excellent cardinality estimation can make the query optimiser produce a good execution plan.Although there are some studies on cardinality estimation,the prediction results of existing cardinality estimators are inaccurate and the query efficiency cannot be guaranteed as well.In particular,they are difficult to accurately obtain the complex relationships between multiple tables in complex database systems.When dealing with complex queries,the existing cardinality estimators cannot achieve good results.In this study,a novel cardinality estimator is proposed.It uses the core techniques with the BiLSTM network structure and adds the attention mechanism.First,the columns involved in the query statements in the training set are sampled and compressed into bitmaps.Then,the Word2vec model is used to embed the word vectors about the query statements.Finally,the BiLSTM network and attention mechanism are employed to deal with word vectors.The proposed model takes into consideration not only the correlation between tables but also the processing of complex predicates.Extensive experiments and the evaluation of BiLSTM-Attention Cardinality Estimator(BACE)on the IMDB datasets are conducted.The results show that the deep learning model can significantly improve the quality of cardinality estimation,which is a vital role in query optimisation for complex databases.
基金supported by the Beijing Municipal Foundation for Clinical Research[Z181100001718033]the Project for Prevention and Treatment of AIDS and Viral Hepatitis[2018ZX10301-404]the National Major Science and Technology Project of China[2019YFC0840704].
文摘Background and aims:Cessation of nucleoside/nucleotide analogue(Nuc)therapy in patients with HBeAg-negative chronic hepatitis B(CHB)remains controversial.Methods:In this prospective,single-center cohort study,we recruited 45 patients with HBeAg-negative CHB from The Fifth Medical Center of Chinese People's Liberation Army General Hospital in China's Mainland.Patients were classified into a Nuc cessation group(n?27)and Nuc continuation group(n?18)and followed-up for 36 months.Nuc were stopped after being inactive for at least 4 years(normal alanine aminotransferase(ALT),undetectable hepatitis B virus(HBV)DNA),with liver fibrosisStage1(S1)and inflammationGrade(G1).Results:Within 3 years of follow-up,51.9%patients with Nuc cessation had virological relapse and 14.8%had ALT elevation,while all patients with Nuc continuation had undetectable HBV DNA and normal ALT.The rate of HBsAg loss after Nuc cessation was 22.2%compared with no seroconversion in patients with Nuc continuation.The hepatitis flare rate was 11.1%and there were no cases of hepatic decompensation after Nuc cessation.End of treatment(EOT)HBsAg,HBV RNA,and decline in HBV core-related antigen(HBcrAg)rate were predictive markers for HBsAg seroconversion at 6 months post-Nuc cessation.Conclusion:This study showed favorable HBsAg loss and low hepatitis flare rates after Nuc cessation.EOT HBsAg,HBV RNA,and decline in HBcrAg rate were predictive markers for HBsAg seroconversion at 6 months post-Nuc cessation.
基金This work was supported by grants from the Strategic PriorityResearch Program of Chinese Academy of Sciences(GrantNos.XDA19090116,XDA19050302,and XDB38030400)awarded to SS,ZZ,and MLthe National Key R&D Programof China(Grant Nos.2020YFC0848900,2020YFC0847000,2016YFE0206600,and 2017YFC0907502)+5 种基金the 13th Five-yearInformatization Plan of Chinese Academy of Sciences(GrantNo.XXH13505-05)Genomics Data Center Construction ofChinese Academy of Sciences(Grant No.XXH-13514-0202)the Open Biodiversity and Health Big Data Programme ofInternational Union of Biological Sciences,International Part-nership Program of Chinese Academy of Sciences(Grant No.153F11KYSB20160008)the Professional Association of theAlliance of International Science Organizations(Grant No.ANSO-PA-2020-07)This work was also supported by KCWong Education Foundation to ZZthe YouthInnovation Promotion Association of Chinese Academy ofSciences(Grant Nos.2017141 and 2019104)awarded to SSand ML.
文摘On January 22,2020,China National Center for Bioinformation(CNCB)released the 2019 Novel Coronavirus Resource(2019nCoVR),an open-access information resource for the severe acute respiratory syndrome coronavirus 2(SARS-CoV-2).2019nCoVR features a comprehensive integration of sequence and clinical information for all publicly available SARS-CoV-2 isolates,which are manually curated with value-added annotations and quality evaluated by an automated in-house pipeline.Of particular note,2019nCoVR offers systematic analyses to generate a dynamic landscape of SARS-CoV-2 genomic variations at a global scale.It provides all identified variants and their detailed statistics for each virus isolate,and congregates the quality score,functional annotation,and population frequency for each variant.Spatiotemporal change for each variant can be visualized and historical viral haplotype network maps for the course of the outbreak are also generated based on all complete and high-quality genomes available.Moreover,2019nCoVR provides a full collection of SARS-CoV-2 relevant literature on the coronavirus disease 2019(COVID-19),including published papers from PubMed as well as preprints from services such as bioRxiv and medRxiv through Europe PMC.Furthermore,by linking with relevant databases in CNCB,2019nCoVR offers data submission services for raw sequence reads and assembled genomes,and data sharing with NCBI.Collectively,SARS-CoV-2 is updated daily to collect the latest information on genome sequences,variants,haplotypes,and literature for a timely reflection,making 2019nCoVR a valuable resource for the global research community.2019nCoVR is accessible at https://bigd.big.ac.cn/ncov/.
基金supported by the National Key R&D Program of China(Grant No.2018YFC1106300 , 2017YFC1105000)the National Natural Science Foundation of China(Grant No.51802340,31870956,31771041 , 81672227)+6 种基金the Science and Technology Project of Guangdong Province-Doctoral startup fund of 2017(Grant No.2017A030310318)the Frontier Science Key Research Programs of CAS(Grant No.QYZDB-SSW-JSC030)the Strategic Priority Research Program of CAS(Grant No.XDA16021000)the Shenzhen significant strategy layout project(Grant No.JCYJ20170413162104773)the Economic,Trade and information Commission of Shenzhen Municipality“Innovation and Industry Chain”(Grant No.20170502171625936)the Beijing Municipal Natural Science Foundation(Grant No.7161001)Beijing Municipal Commission of Health and Family Planning(Grant No.PXM2018_026275_000001).
文摘There is a need for synthetic grafts to reconstruct large bone defects using minimal invasive surgery.Our previous study showed that incorporation of Sr into bioactive borate glass cement enhanced the osteogenic capacity in vivo.However,the amount of Sr in the cement to provide an optimal combination of physicochemical properties and capacity to stimulate bone regeneration and the underlying molecular mechanism of this stimulation is yet to be determined.In this study,bone cements composed of bioactive borosilicate glass particles substituted with varying amounts of Sr(0 mol%to 12 mol%SrO)were created and evaluated in vitro and in vivo.The setting time of the cement increased with Sr substitution of the glass.Upon immersion in PBS,the cement degraded and converted more slowly to HA(hydroxyapatite)with increasing Sr substitution.The released Sr2+modulated the proliferation,differentiation,and mineralization of hBMSCs(human bone marrow mesenchymal stem cells)in vitro.Osteogenic characteristics were optimally enhanced with cement(designated BG6Sr)composed of particles substituted with 6mol%SrO.When implanted in rabbit femoral condyle defects,BG6Sr cement supported better peri-implant bone formation and bone-implant contact,comparing to cements substituted with 0mol%or 9mol%SrO.The underlying mechanism is involved in the activation of Wnt/β-catenin signaling pathway in osteogenic differentiation of hBMSCs.These results indicate that BG6Sr cement has a promising combination of physicochemical properties and biological performance for minimally invasive healing of bone defects.
基金the National Natural Science Foundation of China(grant Nos.51704287 and 51620105001).
文摘Pulsed gas-solid fluidized beds can effectively separate fine coal,and bubbles play an important role in creating suitable separation conditions.The present study performed statistical and image analyses of the evolution of bubbles in a two-dimensional pulsed gas-solid fluidized bed using a high-speed dynamic camera.The effects of apparent gas velocity,pulsation frequency and particle size on bubble characteristics and bed expansi on were analyzed.The results indicate that,when a fluctuation freque ncy is added,the expa nsion height of the bed in creases,the effect of attachme nt to the bed wall decreases,the leading diameter and rising velocity of the bubbles both decrease and the degree of bubble deformation increases.These trends are also more obvious for fine particles.These findings dem on strate that a high density pulsed gas-solid fluidized bed can effectively combine gases and solids to produce a uniform,stable mixture.The bubble diameter and rising velocity were also simulated in the present work,and the relationship between the two was established using a fitting model with an error within 5%.This model provides an effective means of predicting bubble velocity as well as studying the distribution of the bubble phase and improving the stability of the bed density.
基金This study received support from the National Key R&D Program of China(No.2020YFD0900600)the Key Program of Science and Technology of Zhejiang Province(2019C02084).
文摘In recent years,government investments in implementing restrictive public policies on the treatment and discharge of effluents from the aquaculture industry have increased.Hence,efficient and cleaner methods for aquaculture production are needed.Recirculating aquaculture systems(RAS)offers water conservation by recycling the treated aquaculture water for reuse.RAS wastewater treatment using a moving bed bioreactors(MBBRs)process has been considered well suited for maintaining good water quality,thereby making fish farming more sustainable.Currently,improvements were achieved in tackling the influence of salinity,organic matter,disinfectant,and bioreactor start-up process on the MBBR performance efficiency.This review highlights an updated overview of recent development made using MBBR to treat the residual water from RAS.Precisely,nitrification and simultaneous nitrification-denitrification(SND),and other hybrid processes for nitrogen removal were elucidated.Finally,future challenges and prospects of MBBRs in RAS facilities that need to be considered were also proposed.