The changes in activities of key enzymes involved in sucrose-to-starch conversion and concentrations of hormones in superior and inferior spikelets of super rice were investigated and their association with grain fill...The changes in activities of key enzymes involved in sucrose-to-starch conversion and concentrations of hormones in superior and inferior spikelets of super rice were investigated and their association with grain filling was analyzed.Four super rice cultivars,Liangyoupeijiu,IIyou 084,Huaidao 9 and Wujing 15,and two high-yielding and elite check cultivars,Shanyou 63 and Yangfujing 8,were used.The activities of sucrose synthase (SuSase),adenosine diphosphoglucose pyrophosphorylase (AGPase),starch synthase (StSase) and starch branching enzyme (SBE),and the concentrations of zeatin + zeatin riboside (Z + ZR),indole-3-acetic acid (IAA) and abscisic acid (ABA) in superior and inferior spikelets were determined during the grain filling period and their relationships with grain filling rate were analyzed.Maximum grain filling rate,the time reaching the maximum grain-filling rate,mean grain filling rate and brown rice weight for superior spikelets showed a slight difference between the super and check rice cultivars,but were significantly lower in the super rice than in the check rice for inferior spikelets.Changes of enzyme activities and hormone concentrations in grains exhibited single peak curves during the grain filling period.The peak values and the mean activities of SuSase,AGPase,StSase and SBE were lower in inferior spikelets than in superior ones,as well as the peak values and the mean concentrations of Z + ZR and IAA.However,the peak value and the mean concentration of ABA were significantly higher in inferior spikelets than in superior ones and greater in the super rice than in the check rice.The grain filling rate was positively and significantly correlated with the activities of SuSase,AGPase and StSase and the concentrations of Z + ZR and IAA.The results suggested that the low activities of SuSase,AGPase and StSase and the low concentrations of Z + ZR and IAA might be important physiological reasons for the slow grain filling rate and light grain weight of inferior spikelets in super rice.展开更多
A major challenge in modern rice production is to achieve the dual goals of high yield and good quality with low environmental costs.This study was designed to determine whether optimized nitrogen(N)fertilization coul...A major challenge in modern rice production is to achieve the dual goals of high yield and good quality with low environmental costs.This study was designed to determine whether optimized nitrogen(N)fertilization could fulfill these multiple goals.In two-year experiments,two high yielding‘super’rice cultivars were grown with different N fertilization management regimes,including zero N input,local farmers’practice(LFP)with heavy N inputs,and optimized N fertilization(ONF).In ONF,by reducing N input,increasing planting density,and optimizing the ratio of urea application at different stages,N use efficiency and the physicochemical and textural properties of milled rice were improved at higher yield levels.Compared with LFP,yield and partial factor productivity of applied N(PFP)under ONF were increased(on average)by 1.70 and 13.06%,respectively.ONF increased starch and amylose content,and significantly decreased protein content.The contents of the short chains of A chain(degree of polymerization(DP)6-12)and B1 chain(DP 13-25)of amylopectin were significantly increased under ONF,which resulted in a decrease in the stability of rice starch crystals.ONF increased viscosity values and improved the thermodynamic properties of starch,which resulted in better eating and cooking quality of the rice.Thus,ONF could substantially compensate the negative effects caused by N fertilizer and achieve the multiple goals of higher grain quality and nitrogen use efficiency(NUE)at high yield levels.These results will be useful for applications of high quality rice production at high yield levels.展开更多
基金supported by the grants from the National Natural Science Foundation of China(NSFC-IRRI Joint Research Project 31061140457)General Project (Grant Nos. 31071360 and 31271641)+2 种基金the National Basic Research Program (Grant No.2009CB118603)the National Key Technology Support Program of China (Grant Nos. 2011BAD16B14 and 2012BAD04B08)the Basic Scientific Research Special Operation Cost of the Central Research Institutions in 2011 (Grant No. 201103003)
文摘The changes in activities of key enzymes involved in sucrose-to-starch conversion and concentrations of hormones in superior and inferior spikelets of super rice were investigated and their association with grain filling was analyzed.Four super rice cultivars,Liangyoupeijiu,IIyou 084,Huaidao 9 and Wujing 15,and two high-yielding and elite check cultivars,Shanyou 63 and Yangfujing 8,were used.The activities of sucrose synthase (SuSase),adenosine diphosphoglucose pyrophosphorylase (AGPase),starch synthase (StSase) and starch branching enzyme (SBE),and the concentrations of zeatin + zeatin riboside (Z + ZR),indole-3-acetic acid (IAA) and abscisic acid (ABA) in superior and inferior spikelets were determined during the grain filling period and their relationships with grain filling rate were analyzed.Maximum grain filling rate,the time reaching the maximum grain-filling rate,mean grain filling rate and brown rice weight for superior spikelets showed a slight difference between the super and check rice cultivars,but were significantly lower in the super rice than in the check rice for inferior spikelets.Changes of enzyme activities and hormone concentrations in grains exhibited single peak curves during the grain filling period.The peak values and the mean activities of SuSase,AGPase,StSase and SBE were lower in inferior spikelets than in superior ones,as well as the peak values and the mean concentrations of Z + ZR and IAA.However,the peak value and the mean concentration of ABA were significantly higher in inferior spikelets than in superior ones and greater in the super rice than in the check rice.The grain filling rate was positively and significantly correlated with the activities of SuSase,AGPase and StSase and the concentrations of Z + ZR and IAA.The results suggested that the low activities of SuSase,AGPase and StSase and the low concentrations of Z + ZR and IAA might be important physiological reasons for the slow grain filling rate and light grain weight of inferior spikelets in super rice.
基金financially supported by the National Natural Science Foundation of China (32071943 and 31872853)the Priority Academic Program Development of Jiangsu Higher Education Institutions, China (PAPD)
文摘A major challenge in modern rice production is to achieve the dual goals of high yield and good quality with low environmental costs.This study was designed to determine whether optimized nitrogen(N)fertilization could fulfill these multiple goals.In two-year experiments,two high yielding‘super’rice cultivars were grown with different N fertilization management regimes,including zero N input,local farmers’practice(LFP)with heavy N inputs,and optimized N fertilization(ONF).In ONF,by reducing N input,increasing planting density,and optimizing the ratio of urea application at different stages,N use efficiency and the physicochemical and textural properties of milled rice were improved at higher yield levels.Compared with LFP,yield and partial factor productivity of applied N(PFP)under ONF were increased(on average)by 1.70 and 13.06%,respectively.ONF increased starch and amylose content,and significantly decreased protein content.The contents of the short chains of A chain(degree of polymerization(DP)6-12)and B1 chain(DP 13-25)of amylopectin were significantly increased under ONF,which resulted in a decrease in the stability of rice starch crystals.ONF increased viscosity values and improved the thermodynamic properties of starch,which resulted in better eating and cooking quality of the rice.Thus,ONF could substantially compensate the negative effects caused by N fertilizer and achieve the multiple goals of higher grain quality and nitrogen use efficiency(NUE)at high yield levels.These results will be useful for applications of high quality rice production at high yield levels.