Terahertz biotechnology has been increasingly applied in various biomedical fields and has especially shown great potential for application in brain sciences.In this article,we review the development of terahertz biot...Terahertz biotechnology has been increasingly applied in various biomedical fields and has especially shown great potential for application in brain sciences.In this article,we review the development of terahertz biotechnology and its applications in the field of neuropsychiatry.Available evidence indicates promising prospects for the use of terahertz spectroscopy and terahertz imaging techniques in the diagnosis of amyloid disease,cerebrovascular disease,glioma,psychiatric disease,traumatic brain injury,and myelin deficit.In vitro and animal experiments have also demonstrated the potential therapeutic value of terahertz technology in some neuropsychiatric diseases.Although the precise underlying mechanism of the interactions between terahertz electromagnetic waves and the biosystem is not yet fully understood,the research progress in this field shows great potential for biomedical noninvasive diagnostic and therapeutic applications.However,the biosafety of terahertz radiation requires further exploration regarding its two-sided efficacy in practical applications.This review demonstrates that terahertz biotechnology has the potential to be a promising method in the field of neuropsychiatry based on its unique advantages.展开更多
Grassland degradation presents overwhelming challenges to biodiversity,ecosystem services,and the socioeconomic sustainability of dependent communities.However,a comprehensive synthesis of global knowledge on the fron...Grassland degradation presents overwhelming challenges to biodiversity,ecosystem services,and the socioeconomic sustainability of dependent communities.However,a comprehensive synthesis of global knowledge on the frontiers and key areas of grassland degradation research has not been achieved due to the limitations of traditional scientometrics methods.The present synthesis of information employed BERTopic,an advanced natural language processing tool,to analyze the extensive ecological literature on grassland degradation.We compiled a dataset of 4,504 publications from the Web of Science core collection database and used it to evaluate the geographic distribution and temporal evolution of different grassland types and available knowledge on the subject.Our analysis identified key topics in the global grassland degradation research domain,including the effects of grassland degradation on ecosystem functions,grassland ecological restoration and biodiversity conservation,erosion processes and hydrological models in grasslands,and others.The BERTopic analysis significantly outperforms traditional methods in identifying complex and evolving topics in large datasets of literature.Compared to traditional scientometrics analysis,BERTopic provides a more comprehensive perspective on the research areas,revealing not only popular topics but also emerging research areas that traditional methods may overlook,although scientometrics offers more specificity and detail.Therefore,we argue for the simultaneous use of both approaches to achieve more systematic and comprehensive assessments of specific research areas.This study represents an emerging application of BERTopic algorithms in ecological research,particularly in the critical research focused on global grassland degradation.It also highlights the need for integrating advanced computational methods in ecological research in this era of data explosion.Tools like the BERTopic algorithm are essential for enhancing our understanding of complex environmental problems,and it marks an important stride towards more sophisticated,data-driven analysis in ecology.展开更多
The fracture behavior of natural fracture in the geological reservoir subjected to filling property,affects the crack initiation and propagation under stress perturbation.Partial filling flaws were intermediate betwee...The fracture behavior of natural fracture in the geological reservoir subjected to filling property,affects the crack initiation and propagation under stress perturbation.Partial filling flaws were intermediate between open fractures and filled fractures,the fracture response may be worth exploring.In this work,the effect of the filling property of sandstone with partial filling flaws on the fracture behavior was systematically investigated based on three-point bending tests and the numerical approach of discrete element method(DEM).In the laboratory,semi-circular three-point bending tests were carried out with partial filling flaws of various filling strengths.Based on this,numerical simulations were used to further investigate the effect of the filling ratio and the inclination of the partial filling flaw on the mechanical and fracture responses,and the effect of the partial filling flaw under mixed-mode loading on the fracture mechanism was elucidated coupled with acoustic emission(AE)characteristics.The obtained results showed that the increase in filling strength and filling ratio of partial filling flaw led to an increase in peak strength,with a decreasing trend in peak strength with the inclination of partial filling flaw.In terms of crack propagation pattern,the increasing filling strength of the partial filling flaw induced the transformation of the fracture mechanism toward deflection,with a tortuosity path,while the filling ratio and inclination of partial filling flaw led to fracture mechanism change from deflection to penetration and attraction,accompanied with a larger AE event source in filler.Accordingly,the b-value based on the Gutenberg-Richter equation fluctuated between 5 and 4 at low filling ratio and inclination and remained around 5 at high filling ratio and inclination of partial filling flaw.Related results may provide an application prospective for reservoir stimulation using the natural fracture system.展开更多
Objective:To explore the effect of applying safety culture construction in nursing management of infectious disease areas.Methods:During the one-year period from January 2024 to December 2024,patients admitted to the ...Objective:To explore the effect of applying safety culture construction in nursing management of infectious disease areas.Methods:During the one-year period from January 2024 to December 2024,patients admitted to the infectious disease area of our hospital were randomly selected for the study.92 patients were divided into two groups using a computerized double-blind method for intervention.The control group received routine nursing management,while the observation group applied safety culture construction management.The effects of nursing management in the two groups were studied and compared.Results:Before management,the nursing management quality scores of the two groups were evaluated,showing little difference in various scores,and the difference was not statistically significant(P>0.05).Through the implementation of nursing management,the scores of the two groups were significantly improved,and the observation group had significantly higher scores compared to the control group(P<0.05).Compared to the incidence of nursing risk events,the observation group(6.52%)was significantly lower than the control group(30.43%),and there was a significant difference between the two groups(P<0.05).The observation group had significantly higher satisfaction scores for nursing skills,health education,service attitude,and professionalism compared to the control group,indicating patient satisfaction with safety culture construction(P<0.05).Conclusion:Applying safety culture construction in nursing management of infectious disease areas has a preventive effect on nursing risk events and is beneficial for improving patients’risk cognition level.展开更多
Background: As the population age structure gradually ages, more and more elderly people were found to have pulmonary nodules during physical examinations. Most elderly people had underlying diseases such as heart, lu...Background: As the population age structure gradually ages, more and more elderly people were found to have pulmonary nodules during physical examinations. Most elderly people had underlying diseases such as heart, lung, brain and blood vessels and cannot tolerate surgery. Computed tomography (CT)-guided percutaneous core needle biopsy (CNB) was the first choice for pathological diagnosis and subsequent targeted drugs, immune drugs or ablation treatment. CT-guided percutaneous CNB requires clinicians with rich CNB experience to ensure high CNB accuracy, but it was easy to cause complications such as pneumothorax and hemorrhage. Three-dimensional (3D) printing coplanar template (PCT) combined with CT-guided percutaneous pulmonary CNB biopsy has been used in clinical practice, but there was no prospective, randomized controlled study. Methods: Elderly patients with lung nodules admitted to the Department of Oncology of our hospital from January 2019 to January 2023 were selected. A total of 225 elderly patients were screened, and 30 patients were included after screening. They were randomly divided into experimental group (Group A: 30 cases) and control group (Group B: 30 cases). Group A was given 3D-PCT combined with CT-guided percutaneous pulmonary CNB biopsy, Group B underwent CT-guided percutaneous pulmonary CNB. The primary outcome measure of this study was the accuracy of diagnostic CNB, and the secondary outcome measures were CNB time, number of CNB needles, number of pathological tissues and complications. Results: The diagnostic accuracy of group A and group B was 96.67% and 76.67%, respectively (P = 0.026). There were statistical differences between group A and group B in average CNB time (P = 0.001), number of CNB (1 vs more than 1, P = 0.029), and pathological tissue obtained by CNB (3 vs 1, P = 0.040). There was no statistical difference in the incidence of pneumothorax and hemorrhage between the two groups (P > 0.05). Conclusions: 3D-PCT combined with CT-guided percutaneous CNB can improve the puncture accuracy of elderly patients, shorten the puncture time, reduce the number of punctures, and increase the amount of puncture pathological tissue, without increasing pneumothorax and hemorrhage complications. We look forward to verifying this in a phase III randomized controlled clinical study. .展开更多
The shuttle effect of lithium polysulfides(LiPSs)and uncontrollable lithium dendrite growth seriously hinder the practical application of lithium-sulfur(Li-S)batteries.To simultaneously address such issues,monodispers...The shuttle effect of lithium polysulfides(LiPSs)and uncontrollable lithium dendrite growth seriously hinder the practical application of lithium-sulfur(Li-S)batteries.To simultaneously address such issues,monodispersed Nb N quantum dots anchored on nitrogen-doped hollow carbon nanorods(NbN@NHCR)are elaborately developed as efficient Li PSs immobilizer and Li stabilizer for high-performance Li-S full batteries.Density functional theory(DFT)calculations and experimental characterizations demonstrate that the sulfiphilic and lithiophilic NbN@NHCR hybrid can not only efficiently immobilize the soluble Li PSs and facilitate diffusion-conversion kinetics for alleviating the shuttling effect,but also homogenize the distribution of Li+ions and regulate uniform Li deposition for suppressing Li-dendrite growth.As a result,the assembled Li-S full batteries(NbN@NHCR-S||Nb N@NHCR-Li)deliver excellent long-term cycling stability with a low decay rate of 0.031%per cycle over 1000 cycles at high rate of 2 C.Even at a high S loading of 5.8 mg cm^(-2)and a low electrolyte/sulfur ratio of 5.2μL mg^(-1),a large areal capacity of 6.2 mA h cm^(-2)can be achieved in Li-S pouch cell at 0.1 C.This study provides a new perspective via designing a dual-functional sulfiphilic and lithiophilic hybrid to address serious issues of the shuttle effect of S cathode and dendrite growth of Li anode.展开更多
This paper proposes luteolin(LUT)as a novel depressant for the flotation-based separation of scheelite and calcite in a sodium oleate(NaOL)system.The suitability of LUT as a calcite depressant is confirmed through mic...This paper proposes luteolin(LUT)as a novel depressant for the flotation-based separation of scheelite and calcite in a sodium oleate(NaOL)system.The suitability of LUT as a calcite depressant is confirmed through micro-flotation testing.At pH=9,with LUT concentration of 50 mg·L^(-1) and NaOL concentration of 50 mg·L^(-1),scheelite recovery reaches 80.3%.Calcite,on the other hand,exhibits a recovery rate of 17.6%,indicating a significant difference in floatability between the two minerals.Subsequently,the surface modifica-tions of scheelite and calcite following LUT treatment are characterized using adsorption capacity testing,Zeta potential analysis,Fourier transform infrared spectroscopy(FT-IR),X-ray photoelectron spectroscopy(XPS),and atomic force microscopy(AFM).The study in-vestigates the selective depressant mechanism of LUT on calcite.Adsorption capacity testing and Zeta potential analysis demonstrate sub-stantial absorption of LUT on the surface of calcite,impeding the further adsorption of sodium oleate,while its impact on scheelite is min-imal.FT-IR and XPS analyses reveal the selective adsorption of LUT onto the surface of calcite,forming strong chemisorption bonds between the hydroxyl group and calcium ions present.AFM directly illustrates the distinct adsorption densities of LUT on the two miner-al types.Consequently,LUT can effectively serve as a depressant for calcite,enabling the successful separation of scheelite and calcite.展开更多
Typical application scenarios,such as vehicle to grid(V2G)and frequency regulation,have imposed significant long-life demands on lithium-ion batteries.Herein,we propose an advanced battery life-extension method employ...Typical application scenarios,such as vehicle to grid(V2G)and frequency regulation,have imposed significant long-life demands on lithium-ion batteries.Herein,we propose an advanced battery life-extension method employing bidirectional pulse charging(BPC)strategy.Unlike traditional constant current charging methods,BPC strategy not only achieves comparable charging speeds but also facilitates V2G frequency regulation simultaneously.It significantly enhances battery cycle ampere-hour throughput and demonstrates remarkable life extension capabilities.For this interesting conclusion,adopting model identification and postmortem characterization to reveal the life regulation mechanism of BPC:it mitigates battery capacity loss attributed to loss of lithium-ion inventory(LLI)in graphite anodes by intermittently regulating the overall battery voltage and anode potential using a negative charging current.Then,from the perspective of internal side reaction,the life extension mechanism is further revealed as inhibition of solid electrolyte interphase(SEI)and lithium dendrite growth by regulating voltage with a bidirectional pulse current,and a semi-empirical life degradation model combining SEI and lithium dendrite growth is developed for BPC scenarios health management,the model parameters are identified by genetic algorithm with the life simulation exhibiting an accuracy exceeding 99%.This finding indicates that under typical rate conditions,adaptable BPC strategies can extend the service life of LFP battery by approximately 123%.Consequently,the developed advanced BPC strategy offers innovative perspectives and insights for the development of long-life battery applications in the future.展开更多
Background:Polymethoxylatedflavones(PMFs)are compounds present in citrus peels and other Rutaceae plants,which exhibit diverse biological activities,including robust antitumor and antioxidant effects.However,the mechan...Background:Polymethoxylatedflavones(PMFs)are compounds present in citrus peels and other Rutaceae plants,which exhibit diverse biological activities,including robust antitumor and antioxidant effects.However,the mechanism of PMFs in reversing drug resistance to colon cancer remains unknown.In the present study,we aimed to investigate the potential connection between the aerobic glycolysis-ROS-autophagy signaling axis and the reversal of PTX resistance in colon cancer by PMFs.Methods:MTT Cell viability assay and colony formation assay were used to investigate the effect of PMFs combined with PTX in reversing HCT8/T cell resistance ex vivo;the mRNA and protein levels of the target were detected by SDS-PAGE(sodium dodecyl sulfate-polyacrylamide gel electrophoresis),quantitative real-timefluorescence polymerase chain reaction(qRT-PCR)and Western blot protein immunoblotting(WB);An HCT8/T cell xenograft model was established to investigate the MDR reversal activity of PMFs in vivo;The extracellular acidification rate(ECAR)and the oxygen consumption rate(OCR)were detected to assess the cellular oxygen consumption rate and glycolytic process.Results:HCT8/T cells demonstrated significant resistance to PTX,up-regulating the expression levels of ABCB1 mRNA,P-gp,LC3-I,and LC3-II protein,and increasing intracellular reactive oxygen species(ROS)content.PMFs mainly contain two active ingredients,nobiletin,and tangeretin,which were able to reverse drug resistance in HCT8/T cells in a concentration-dependent manner.PMFs exhibited high tolerance in the HCT8/T nude mouse model while increasing the sensitivity of PTX-resistant cells and suppressing tumor growth significantly.PMFs combined with PTX reduced extracellular acidification rate(ECAR)and oxygen consumption rate(OCR)in HCT8/T cells.Additionally,PMFs reduced intracellular ROS content,down-regulated the expression levels of autophagy-related proteins LC3-I,LC3-II,Beclin1,and ATG7,and significantly reduced the number of autophagosomes in HCT8/T cells.Conclusions:The present study demonstrated that PMFs could potentially reverse PTX resistance in colon cancer by regulating the aerobic glycolysis-ROS-autophagy signaling axis,which indicated that PMFs would be potential potentiators for future chemotherapeutic agents in colon cancer.展开更多
Periodontitis is a chronic inflammatory and immune reactive disease induced by the subgingival biofilm.The therapeutic effect for susceptible patients is often unsatisfactory due to excessive inflammatory response and...Periodontitis is a chronic inflammatory and immune reactive disease induced by the subgingival biofilm.The therapeutic effect for susceptible patients is often unsatisfactory due to excessive inflammatory response and oxidative stress.Sinensetin(Sin)is a nature polymethoxylated flavonoid with anti-inflammatory and antioxidant activities.Our study aimed to explore the beneficial effect of Sin on periodontitis and the specific molecular mechanisms.We found that Sin attenuated oxidative stress and inflammatory levels of periodontal ligament cells(PDLCs)under inflammatory conditions.Administered Sin to rats with ligation-induced periodontitis models exhibited a protective effect against periodontitis in vivo.By molecular docking,we identified Bach1 as a strong binding target of Sin,and this binding was further verified by cellular thermal displacement assay and immunofluorescence assays.Chromatin immunoprecipitation-quantitative polymerase chain reaction results also revealed that Sin obstructed the binding of Bach1 to the HMOX1 promoter,subsequently upregulating the expression of the key antioxidant factor HO-1.Further functional experiments with Bach1 knocked down and overexpressed verified Bach1 as a key target for Sin to exert its antioxidant effects.Additionally,we demonstrated that Sin prompted the reduction of Bach1 by potentiating the ubiquitination degradation of Bach1,thereby inducing HO-1 expression and inhibiting oxidative stress.Overall,Sin could be a promising drug candidate for the treatment of periodontitis by targeting binding to Bach1.展开更多
Background:The constructing PERMA model in psychological intervention was applied to patients with chronic cancer pain to provide data reference for reducing pain,fear of cancer recurrence,and improving the level of p...Background:The constructing PERMA model in psychological intervention was applied to patients with chronic cancer pain to provide data reference for reducing pain,fear of cancer recurrence,and improving the level of psychological capital.Aim:To explore the clinical effects of constructing PERMA model in psychological intervention for patients with chronic cancer pain.Methods:A total of 98 patients with chronic cancer pain admitted to our hospital from March 2021 to March 2023 were randomly divided into two groups,49 cases in each group.The control group received routine intervention,while the research group constructed PERMA model based on the routine intervention for psychological intervention.The pain severity,fear of cancer recurrence,psychological capital and quality of life before and after intervention were compared between the two groups.Results:After two months of intervention,the pain in the research group was milder than that in the control group(p<0.05).The scores and total scores of all dimensions of fear of cancer recurrence in the research group were lower than those in the control group(p<0.05).The scores and total scores of each dimension of psychological capital in the research group were higher than those in the control group(p<0.05).The scores of all dimensions of quality of life in the research group were higher than those in the control group(p<0.05).Conclusion:The PERMA model constructed in psychological interventions for patients with chronic cancer pain can assist analgesic medications to reduce pain and alleviate the fear of cancer recurrence,increase the level of psychological capital,and thus improve quality of life.展开更多
BACKGROUND Leiomyomas(LMs)are mesenchymal tumors that arise from smooth muscle cells.LMs most commonly arise in organs with an abundance of smooth muscle such as the uterus and gastrointestinal tract.Conversely,LMs ar...BACKGROUND Leiomyomas(LMs)are mesenchymal tumors that arise from smooth muscle cells.LMs most commonly arise in organs with an abundance of smooth muscle such as the uterus and gastrointestinal tract.Conversely,LMs are rarely detected in the head and neck region.In this study,we report a rare case of laryngeal LM(LLM)and summarized the clinical characteristics of reported LLMs to help clinicians better understand this rare disease and improve its diagnosis,treatment,and postoperative course.CASE SUMMARY A 49-year-old man was admitted to our ENT outpatient clinic with a chief complaint of pharynx discomfort for 2 months.Laryngoscopy performed under topical anesthesia revealed a solitary,pink mass at the tubercle of epiglottis.Surgery via laryngeal endoscopy was performed under general anesthesia,and the lesion was excised easily.Positive immunohistochemical staining for desmin and smooth-muscle actin indicated a smooth muscle origin and the diagnosis was laryngeal leiomyoma.After surgery,the patient’s condition was stable,and he was discharged 2 d after surgery.During the 1-year postoperative period,the patient’s condition remained stable without evidence of recurrence.CONCLUSION Surgical resection is the preferred treatment for LLMs,its early diagnosis and differential diagnosis have important clinical significance.展开更多
BACKGROUND China's most frequent malignancy is gastric cancer(GC),which has a very poor survival rate,and the survival rate for patients with advanced GC is dismal.Pyroptosis has been connected to the genesis and ...BACKGROUND China's most frequent malignancy is gastric cancer(GC),which has a very poor survival rate,and the survival rate for patients with advanced GC is dismal.Pyroptosis has been connected to the genesis and development of cancer.The function of pyroptosis-related long non-coding RNAs(PRLs)in GC,on the other hand,remains uncertain.AIM To explore the construction and comprehensive analysis of the prognostic characteristics of long non-coding RNA(lncRNA)related to pyroptosis in GC patients.METHODS The TCGA database provided us with 352 stomach adenocarcinoma samples,and we obtained 28 pyroptotic genes from the Reactome database.We examined the correlation between lncRNAs and pyroptosis using the Pearson correlation coefficient.Prognosis-related PRLs were identified through univariate Cox analysis.A predictive signature was constructed using stepwise Cox regression analysis,and its reliability and independence were assessed.To facilitate clinical application,a nomogram was created based on this signature.we analyzed differences in immune cell infiltration,immune function,and checkpoints between the high-risk group(HRG)and low-risk group(LRG).RESULTS Five hundred and twenty-three PRLs were screened from all lncRNAs(absolute correlation coefficient>0.4,P<0.05).Nine PRLs were included in the risk prediction signature that was created through stepwise Cox regression analysis.We determined the risk score for GC patients and employed the median value as the dividing line between HRG and LRG.The ability of the risk signature to predict the overall survival(OS)of GC is demonstrated by the Kaplan-Meier analysis,risk curve,receiver operating characteristic curve,and decision curve analysis curve.The risk signature was shown to be an independent prognostic factor for OS in both univariate and multivariate Cox regression analyses.HRG showed a more efficient local immune response or modulation compared to LRG,as indicated by the predicted signal pathway analysis and examination of immune cell infiltration,function,and checkpoints(P<0.05).CONCLUSION In general,we have created a brand-new prognostic signature using PRLs,which may provide ideas for immunotherapy in patients with GC.展开更多
GH 3230 superalloy is a solution strengthening nickel-based superalloy and it is commonly used for fabricating hot components with the service temperature of above 900℃.In order to further improve high-temperature pe...GH 3230 superalloy is a solution strengthening nickel-based superalloy and it is commonly used for fabricating hot components with the service temperature of above 900℃.In order to further improve high-temperature performance,nickel-based alloy matrix composites(NMCs)were proposed.Meanwhile,it is known that laser additive manufacturing is an optional method for fabricating nickel-based composites.However,the research on ceramic-reinforced GH 3230 fabricated by laser metal deposition(LMD)are highly lacking.The aim of this study is to develop TiC ceramic particle reinforced GH 3230 composites using laser metal deposition(LMD)method and study the effect of TiC content on their microstructure and tensile properties.The results showed that TiC particles not only changed the intensity and position of the X-ray diffraction peaks of the alloy matrix but also had a significant effect on the refinement of the cellular dendrites.Meanwhile,it was found that an interfacial layer with sub-micrometer thickness was formed between the TiC ceramic particle and the superalloy matrix,which was identified to be(W,Ti)C_(1-x)phase by the TEM.In terms of the as-built composites,the ultimate tensile strength(UTS)and yield strength(YS)gradually increased,but elongation(EL)decreased with the increase of TiC content.For the as-LMDed 10 vol.%TiC/GH3230 composites,UTS and EL reached 1077.0 MPa and 12.4%,respectively.The enhancement of the tensile strength for composites was attributed to the combined effect of grain refinement strengthening,Orowan strengthening,dislocation strengthening and loading-bearing strengthening.展开更多
基金supported by grants from the National Key R&D Program of China,No.2017YFC0909200(to DC)the National Natural Science Foundation of China,No.62075225(to HZ)+1 种基金Zhejiang Provincial Medical Health Science and Technology Project,No.2023XY053(to ZP)Zhejiang Provincial Traditional Chinese Medical Science and Technology Project,No.2023ZL703(to ZP).
文摘Terahertz biotechnology has been increasingly applied in various biomedical fields and has especially shown great potential for application in brain sciences.In this article,we review the development of terahertz biotechnology and its applications in the field of neuropsychiatry.Available evidence indicates promising prospects for the use of terahertz spectroscopy and terahertz imaging techniques in the diagnosis of amyloid disease,cerebrovascular disease,glioma,psychiatric disease,traumatic brain injury,and myelin deficit.In vitro and animal experiments have also demonstrated the potential therapeutic value of terahertz technology in some neuropsychiatric diseases.Although the precise underlying mechanism of the interactions between terahertz electromagnetic waves and the biosystem is not yet fully understood,the research progress in this field shows great potential for biomedical noninvasive diagnostic and therapeutic applications.However,the biosafety of terahertz radiation requires further exploration regarding its two-sided efficacy in practical applications.This review demonstrates that terahertz biotechnology has the potential to be a promising method in the field of neuropsychiatry based on its unique advantages.
基金financially supported by the First-Class Curriculum Program at the School of Economics and Management,University of the Chinese Academy of Sciencesthe National Natural Science Foundation of China(42041005)the National Social Science Foundation of China(23BTQ054)。
文摘Grassland degradation presents overwhelming challenges to biodiversity,ecosystem services,and the socioeconomic sustainability of dependent communities.However,a comprehensive synthesis of global knowledge on the frontiers and key areas of grassland degradation research has not been achieved due to the limitations of traditional scientometrics methods.The present synthesis of information employed BERTopic,an advanced natural language processing tool,to analyze the extensive ecological literature on grassland degradation.We compiled a dataset of 4,504 publications from the Web of Science core collection database and used it to evaluate the geographic distribution and temporal evolution of different grassland types and available knowledge on the subject.Our analysis identified key topics in the global grassland degradation research domain,including the effects of grassland degradation on ecosystem functions,grassland ecological restoration and biodiversity conservation,erosion processes and hydrological models in grasslands,and others.The BERTopic analysis significantly outperforms traditional methods in identifying complex and evolving topics in large datasets of literature.Compared to traditional scientometrics analysis,BERTopic provides a more comprehensive perspective on the research areas,revealing not only popular topics but also emerging research areas that traditional methods may overlook,although scientometrics offers more specificity and detail.Therefore,we argue for the simultaneous use of both approaches to achieve more systematic and comprehensive assessments of specific research areas.This study represents an emerging application of BERTopic algorithms in ecological research,particularly in the critical research focused on global grassland degradation.It also highlights the need for integrating advanced computational methods in ecological research in this era of data explosion.Tools like the BERTopic algorithm are essential for enhancing our understanding of complex environmental problems,and it marks an important stride towards more sophisticated,data-driven analysis in ecology.
基金supported by the National Key R&D Program of China(Grant No.2022YFE0128300).
文摘The fracture behavior of natural fracture in the geological reservoir subjected to filling property,affects the crack initiation and propagation under stress perturbation.Partial filling flaws were intermediate between open fractures and filled fractures,the fracture response may be worth exploring.In this work,the effect of the filling property of sandstone with partial filling flaws on the fracture behavior was systematically investigated based on three-point bending tests and the numerical approach of discrete element method(DEM).In the laboratory,semi-circular three-point bending tests were carried out with partial filling flaws of various filling strengths.Based on this,numerical simulations were used to further investigate the effect of the filling ratio and the inclination of the partial filling flaw on the mechanical and fracture responses,and the effect of the partial filling flaw under mixed-mode loading on the fracture mechanism was elucidated coupled with acoustic emission(AE)characteristics.The obtained results showed that the increase in filling strength and filling ratio of partial filling flaw led to an increase in peak strength,with a decreasing trend in peak strength with the inclination of partial filling flaw.In terms of crack propagation pattern,the increasing filling strength of the partial filling flaw induced the transformation of the fracture mechanism toward deflection,with a tortuosity path,while the filling ratio and inclination of partial filling flaw led to fracture mechanism change from deflection to penetration and attraction,accompanied with a larger AE event source in filler.Accordingly,the b-value based on the Gutenberg-Richter equation fluctuated between 5 and 4 at low filling ratio and inclination and remained around 5 at high filling ratio and inclination of partial filling flaw.Related results may provide an application prospective for reservoir stimulation using the natural fracture system.
文摘Objective:To explore the effect of applying safety culture construction in nursing management of infectious disease areas.Methods:During the one-year period from January 2024 to December 2024,patients admitted to the infectious disease area of our hospital were randomly selected for the study.92 patients were divided into two groups using a computerized double-blind method for intervention.The control group received routine nursing management,while the observation group applied safety culture construction management.The effects of nursing management in the two groups were studied and compared.Results:Before management,the nursing management quality scores of the two groups were evaluated,showing little difference in various scores,and the difference was not statistically significant(P>0.05).Through the implementation of nursing management,the scores of the two groups were significantly improved,and the observation group had significantly higher scores compared to the control group(P<0.05).Compared to the incidence of nursing risk events,the observation group(6.52%)was significantly lower than the control group(30.43%),and there was a significant difference between the two groups(P<0.05).The observation group had significantly higher satisfaction scores for nursing skills,health education,service attitude,and professionalism compared to the control group,indicating patient satisfaction with safety culture construction(P<0.05).Conclusion:Applying safety culture construction in nursing management of infectious disease areas has a preventive effect on nursing risk events and is beneficial for improving patients’risk cognition level.
文摘Background: As the population age structure gradually ages, more and more elderly people were found to have pulmonary nodules during physical examinations. Most elderly people had underlying diseases such as heart, lung, brain and blood vessels and cannot tolerate surgery. Computed tomography (CT)-guided percutaneous core needle biopsy (CNB) was the first choice for pathological diagnosis and subsequent targeted drugs, immune drugs or ablation treatment. CT-guided percutaneous CNB requires clinicians with rich CNB experience to ensure high CNB accuracy, but it was easy to cause complications such as pneumothorax and hemorrhage. Three-dimensional (3D) printing coplanar template (PCT) combined with CT-guided percutaneous pulmonary CNB biopsy has been used in clinical practice, but there was no prospective, randomized controlled study. Methods: Elderly patients with lung nodules admitted to the Department of Oncology of our hospital from January 2019 to January 2023 were selected. A total of 225 elderly patients were screened, and 30 patients were included after screening. They were randomly divided into experimental group (Group A: 30 cases) and control group (Group B: 30 cases). Group A was given 3D-PCT combined with CT-guided percutaneous pulmonary CNB biopsy, Group B underwent CT-guided percutaneous pulmonary CNB. The primary outcome measure of this study was the accuracy of diagnostic CNB, and the secondary outcome measures were CNB time, number of CNB needles, number of pathological tissues and complications. Results: The diagnostic accuracy of group A and group B was 96.67% and 76.67%, respectively (P = 0.026). There were statistical differences between group A and group B in average CNB time (P = 0.001), number of CNB (1 vs more than 1, P = 0.029), and pathological tissue obtained by CNB (3 vs 1, P = 0.040). There was no statistical difference in the incidence of pneumothorax and hemorrhage between the two groups (P > 0.05). Conclusions: 3D-PCT combined with CT-guided percutaneous CNB can improve the puncture accuracy of elderly patients, shorten the puncture time, reduce the number of punctures, and increase the amount of puncture pathological tissue, without increasing pneumothorax and hemorrhage complications. We look forward to verifying this in a phase III randomized controlled clinical study. .
基金supported by the open research fund of Songshan Lake Materials Laboratory (2022SLABFN26)the National Natural Science Foundation of China (21773024)+1 种基金the Sichuan Science and Technology program (2020YJ0324,2020YJ0262)the Reformation and Development Funds for Local Region Universities from China Government in 2020 (ZCKJ 2020-11)。
文摘The shuttle effect of lithium polysulfides(LiPSs)and uncontrollable lithium dendrite growth seriously hinder the practical application of lithium-sulfur(Li-S)batteries.To simultaneously address such issues,monodispersed Nb N quantum dots anchored on nitrogen-doped hollow carbon nanorods(NbN@NHCR)are elaborately developed as efficient Li PSs immobilizer and Li stabilizer for high-performance Li-S full batteries.Density functional theory(DFT)calculations and experimental characterizations demonstrate that the sulfiphilic and lithiophilic NbN@NHCR hybrid can not only efficiently immobilize the soluble Li PSs and facilitate diffusion-conversion kinetics for alleviating the shuttling effect,but also homogenize the distribution of Li+ions and regulate uniform Li deposition for suppressing Li-dendrite growth.As a result,the assembled Li-S full batteries(NbN@NHCR-S||Nb N@NHCR-Li)deliver excellent long-term cycling stability with a low decay rate of 0.031%per cycle over 1000 cycles at high rate of 2 C.Even at a high S loading of 5.8 mg cm^(-2)and a low electrolyte/sulfur ratio of 5.2μL mg^(-1),a large areal capacity of 6.2 mA h cm^(-2)can be achieved in Li-S pouch cell at 0.1 C.This study provides a new perspective via designing a dual-functional sulfiphilic and lithiophilic hybrid to address serious issues of the shuttle effect of S cathode and dendrite growth of Li anode.
基金supported by the National Natural Science Foundation of China (No.52164022).
文摘This paper proposes luteolin(LUT)as a novel depressant for the flotation-based separation of scheelite and calcite in a sodium oleate(NaOL)system.The suitability of LUT as a calcite depressant is confirmed through micro-flotation testing.At pH=9,with LUT concentration of 50 mg·L^(-1) and NaOL concentration of 50 mg·L^(-1),scheelite recovery reaches 80.3%.Calcite,on the other hand,exhibits a recovery rate of 17.6%,indicating a significant difference in floatability between the two minerals.Subsequently,the surface modifica-tions of scheelite and calcite following LUT treatment are characterized using adsorption capacity testing,Zeta potential analysis,Fourier transform infrared spectroscopy(FT-IR),X-ray photoelectron spectroscopy(XPS),and atomic force microscopy(AFM).The study in-vestigates the selective depressant mechanism of LUT on calcite.Adsorption capacity testing and Zeta potential analysis demonstrate sub-stantial absorption of LUT on the surface of calcite,impeding the further adsorption of sodium oleate,while its impact on scheelite is min-imal.FT-IR and XPS analyses reveal the selective adsorption of LUT onto the surface of calcite,forming strong chemisorption bonds between the hydroxyl group and calcium ions present.AFM directly illustrates the distinct adsorption densities of LUT on the two miner-al types.Consequently,LUT can effectively serve as a depressant for calcite,enabling the successful separation of scheelite and calcite.
基金supported by the National Natural Science Foundation of China(52177217)。
文摘Typical application scenarios,such as vehicle to grid(V2G)and frequency regulation,have imposed significant long-life demands on lithium-ion batteries.Herein,we propose an advanced battery life-extension method employing bidirectional pulse charging(BPC)strategy.Unlike traditional constant current charging methods,BPC strategy not only achieves comparable charging speeds but also facilitates V2G frequency regulation simultaneously.It significantly enhances battery cycle ampere-hour throughput and demonstrates remarkable life extension capabilities.For this interesting conclusion,adopting model identification and postmortem characterization to reveal the life regulation mechanism of BPC:it mitigates battery capacity loss attributed to loss of lithium-ion inventory(LLI)in graphite anodes by intermittently regulating the overall battery voltage and anode potential using a negative charging current.Then,from the perspective of internal side reaction,the life extension mechanism is further revealed as inhibition of solid electrolyte interphase(SEI)and lithium dendrite growth by regulating voltage with a bidirectional pulse current,and a semi-empirical life degradation model combining SEI and lithium dendrite growth is developed for BPC scenarios health management,the model parameters are identified by genetic algorithm with the life simulation exhibiting an accuracy exceeding 99%.This finding indicates that under typical rate conditions,adaptable BPC strategies can extend the service life of LFP battery by approximately 123%.Consequently,the developed advanced BPC strategy offers innovative perspectives and insights for the development of long-life battery applications in the future.
基金supported by National Natural Science Foundation of China(82104446)Guangdong Basic and Applied Basic Research Foundation(2023A1515011961)+3 种基金Guangdong Province Characteristic Innovation Project of Universities(2022KTSCX100)Guangzhou University(College)-(High Level University/Deng feng Hospital)Basic and Applied Basic Research Project(2023A03J0397)Guangdong Medical Science and Technology Research Foundation(A2023460)Plan on Enhancing Scientific Research in GMU(2024SRP117).
文摘Background:Polymethoxylatedflavones(PMFs)are compounds present in citrus peels and other Rutaceae plants,which exhibit diverse biological activities,including robust antitumor and antioxidant effects.However,the mechanism of PMFs in reversing drug resistance to colon cancer remains unknown.In the present study,we aimed to investigate the potential connection between the aerobic glycolysis-ROS-autophagy signaling axis and the reversal of PTX resistance in colon cancer by PMFs.Methods:MTT Cell viability assay and colony formation assay were used to investigate the effect of PMFs combined with PTX in reversing HCT8/T cell resistance ex vivo;the mRNA and protein levels of the target were detected by SDS-PAGE(sodium dodecyl sulfate-polyacrylamide gel electrophoresis),quantitative real-timefluorescence polymerase chain reaction(qRT-PCR)and Western blot protein immunoblotting(WB);An HCT8/T cell xenograft model was established to investigate the MDR reversal activity of PMFs in vivo;The extracellular acidification rate(ECAR)and the oxygen consumption rate(OCR)were detected to assess the cellular oxygen consumption rate and glycolytic process.Results:HCT8/T cells demonstrated significant resistance to PTX,up-regulating the expression levels of ABCB1 mRNA,P-gp,LC3-I,and LC3-II protein,and increasing intracellular reactive oxygen species(ROS)content.PMFs mainly contain two active ingredients,nobiletin,and tangeretin,which were able to reverse drug resistance in HCT8/T cells in a concentration-dependent manner.PMFs exhibited high tolerance in the HCT8/T nude mouse model while increasing the sensitivity of PTX-resistant cells and suppressing tumor growth significantly.PMFs combined with PTX reduced extracellular acidification rate(ECAR)and oxygen consumption rate(OCR)in HCT8/T cells.Additionally,PMFs reduced intracellular ROS content,down-regulated the expression levels of autophagy-related proteins LC3-I,LC3-II,Beclin1,and ATG7,and significantly reduced the number of autophagosomes in HCT8/T cells.Conclusions:The present study demonstrated that PMFs could potentially reverse PTX resistance in colon cancer by regulating the aerobic glycolysis-ROS-autophagy signaling axis,which indicated that PMFs would be potential potentiators for future chemotherapeutic agents in colon cancer.
基金supported by National Natural Science Foundation of China(82001050,82173871)Natural Science Foundation of Jiangsu Province(BK20190135)+2 种基金Fundamental Research Funds for the Central Universities(021414380503)“3456”Cultivation Program for Junior Talents of Nanjing Stomatological Hospital,Medical School of Nanjing University(0222R209)Jiangsu Provincial Medical Key Discipline Cultivation Unit(JSDW202246).
文摘Periodontitis is a chronic inflammatory and immune reactive disease induced by the subgingival biofilm.The therapeutic effect for susceptible patients is often unsatisfactory due to excessive inflammatory response and oxidative stress.Sinensetin(Sin)is a nature polymethoxylated flavonoid with anti-inflammatory and antioxidant activities.Our study aimed to explore the beneficial effect of Sin on periodontitis and the specific molecular mechanisms.We found that Sin attenuated oxidative stress and inflammatory levels of periodontal ligament cells(PDLCs)under inflammatory conditions.Administered Sin to rats with ligation-induced periodontitis models exhibited a protective effect against periodontitis in vivo.By molecular docking,we identified Bach1 as a strong binding target of Sin,and this binding was further verified by cellular thermal displacement assay and immunofluorescence assays.Chromatin immunoprecipitation-quantitative polymerase chain reaction results also revealed that Sin obstructed the binding of Bach1 to the HMOX1 promoter,subsequently upregulating the expression of the key antioxidant factor HO-1.Further functional experiments with Bach1 knocked down and overexpressed verified Bach1 as a key target for Sin to exert its antioxidant effects.Additionally,we demonstrated that Sin prompted the reduction of Bach1 by potentiating the ubiquitination degradation of Bach1,thereby inducing HO-1 expression and inhibiting oxidative stress.Overall,Sin could be a promising drug candidate for the treatment of periodontitis by targeting binding to Bach1.
基金the Deanship of Research and Graduate Studies of King Khalid University for funding this work through grant number RGP1/194/45Research Project Funded by Nantong Municipal Health Commission(QNZ2023058).
文摘Background:The constructing PERMA model in psychological intervention was applied to patients with chronic cancer pain to provide data reference for reducing pain,fear of cancer recurrence,and improving the level of psychological capital.Aim:To explore the clinical effects of constructing PERMA model in psychological intervention for patients with chronic cancer pain.Methods:A total of 98 patients with chronic cancer pain admitted to our hospital from March 2021 to March 2023 were randomly divided into two groups,49 cases in each group.The control group received routine intervention,while the research group constructed PERMA model based on the routine intervention for psychological intervention.The pain severity,fear of cancer recurrence,psychological capital and quality of life before and after intervention were compared between the two groups.Results:After two months of intervention,the pain in the research group was milder than that in the control group(p<0.05).The scores and total scores of all dimensions of fear of cancer recurrence in the research group were lower than those in the control group(p<0.05).The scores and total scores of each dimension of psychological capital in the research group were higher than those in the control group(p<0.05).The scores of all dimensions of quality of life in the research group were higher than those in the control group(p<0.05).Conclusion:The PERMA model constructed in psychological interventions for patients with chronic cancer pain can assist analgesic medications to reduce pain and alleviate the fear of cancer recurrence,increase the level of psychological capital,and thus improve quality of life.
基金Supported by National Natural Science Foundation of China,No.82071031。
文摘BACKGROUND Leiomyomas(LMs)are mesenchymal tumors that arise from smooth muscle cells.LMs most commonly arise in organs with an abundance of smooth muscle such as the uterus and gastrointestinal tract.Conversely,LMs are rarely detected in the head and neck region.In this study,we report a rare case of laryngeal LM(LLM)and summarized the clinical characteristics of reported LLMs to help clinicians better understand this rare disease and improve its diagnosis,treatment,and postoperative course.CASE SUMMARY A 49-year-old man was admitted to our ENT outpatient clinic with a chief complaint of pharynx discomfort for 2 months.Laryngoscopy performed under topical anesthesia revealed a solitary,pink mass at the tubercle of epiglottis.Surgery via laryngeal endoscopy was performed under general anesthesia,and the lesion was excised easily.Positive immunohistochemical staining for desmin and smooth-muscle actin indicated a smooth muscle origin and the diagnosis was laryngeal leiomyoma.After surgery,the patient’s condition was stable,and he was discharged 2 d after surgery.During the 1-year postoperative period,the patient’s condition remained stable without evidence of recurrence.CONCLUSION Surgical resection is the preferred treatment for LLMs,its early diagnosis and differential diagnosis have important clinical significance.
基金Supported by The Scientific Research Project of Integrated Traditional Chinese and Western Medicine of Tianjin Health Commission Administration of Traditional Chinese Medicine,No.2021010 and No.2023166Xiao-Ping Chen Foundation for the Development of Science and Technology of Hubei Province,No.CXPJJH122002-073.
文摘BACKGROUND China's most frequent malignancy is gastric cancer(GC),which has a very poor survival rate,and the survival rate for patients with advanced GC is dismal.Pyroptosis has been connected to the genesis and development of cancer.The function of pyroptosis-related long non-coding RNAs(PRLs)in GC,on the other hand,remains uncertain.AIM To explore the construction and comprehensive analysis of the prognostic characteristics of long non-coding RNA(lncRNA)related to pyroptosis in GC patients.METHODS The TCGA database provided us with 352 stomach adenocarcinoma samples,and we obtained 28 pyroptotic genes from the Reactome database.We examined the correlation between lncRNAs and pyroptosis using the Pearson correlation coefficient.Prognosis-related PRLs were identified through univariate Cox analysis.A predictive signature was constructed using stepwise Cox regression analysis,and its reliability and independence were assessed.To facilitate clinical application,a nomogram was created based on this signature.we analyzed differences in immune cell infiltration,immune function,and checkpoints between the high-risk group(HRG)and low-risk group(LRG).RESULTS Five hundred and twenty-three PRLs were screened from all lncRNAs(absolute correlation coefficient>0.4,P<0.05).Nine PRLs were included in the risk prediction signature that was created through stepwise Cox regression analysis.We determined the risk score for GC patients and employed the median value as the dividing line between HRG and LRG.The ability of the risk signature to predict the overall survival(OS)of GC is demonstrated by the Kaplan-Meier analysis,risk curve,receiver operating characteristic curve,and decision curve analysis curve.The risk signature was shown to be an independent prognostic factor for OS in both univariate and multivariate Cox regression analyses.HRG showed a more efficient local immune response or modulation compared to LRG,as indicated by the predicted signal pathway analysis and examination of immune cell infiltration,function,and checkpoints(P<0.05).CONCLUSION In general,we have created a brand-new prognostic signature using PRLs,which may provide ideas for immunotherapy in patients with GC.
基金Supported by Beijing Nova Program(Grant No.Z201100006820094)National Natural Science Foundation of China(Grant Nos.51775525,52175369,U2141205)。
文摘GH 3230 superalloy is a solution strengthening nickel-based superalloy and it is commonly used for fabricating hot components with the service temperature of above 900℃.In order to further improve high-temperature performance,nickel-based alloy matrix composites(NMCs)were proposed.Meanwhile,it is known that laser additive manufacturing is an optional method for fabricating nickel-based composites.However,the research on ceramic-reinforced GH 3230 fabricated by laser metal deposition(LMD)are highly lacking.The aim of this study is to develop TiC ceramic particle reinforced GH 3230 composites using laser metal deposition(LMD)method and study the effect of TiC content on their microstructure and tensile properties.The results showed that TiC particles not only changed the intensity and position of the X-ray diffraction peaks of the alloy matrix but also had a significant effect on the refinement of the cellular dendrites.Meanwhile,it was found that an interfacial layer with sub-micrometer thickness was formed between the TiC ceramic particle and the superalloy matrix,which was identified to be(W,Ti)C_(1-x)phase by the TEM.In terms of the as-built composites,the ultimate tensile strength(UTS)and yield strength(YS)gradually increased,but elongation(EL)decreased with the increase of TiC content.For the as-LMDed 10 vol.%TiC/GH3230 composites,UTS and EL reached 1077.0 MPa and 12.4%,respectively.The enhancement of the tensile strength for composites was attributed to the combined effect of grain refinement strengthening,Orowan strengthening,dislocation strengthening and loading-bearing strengthening.