Apple replant disease is a complex soil syndrome that occurs when the same fields are repeatedly utilized for apple orchard cultivation.It can be caused by various pathogens,and Fusarium solani is the main pathogen.Fu...Apple replant disease is a complex soil syndrome that occurs when the same fields are repeatedly utilized for apple orchard cultivation.It can be caused by various pathogens,and Fusarium solani is the main pathogen.Fusarium solani disrupts the structure and function of the orchard soil ecosystem and inhibits the growth and development of apple trees,significantly impacting the quality and yield of apples.In this study,we conducted a transcriptome comparison between uninoculated apple saplings and those inoculated with F:solani.The differentially expressed genes were mainly enriched in processes such as response to symbiotic fungus.Plant defensins are antimicrobial peptides,but their roles during F.solani infection remain unclear.We performed a genome-wide identification of apple defensin genes and identified 25 genes with the conserved motif of eight cysteine residues.In wildtype apple rootstock inoculated with F.solani,the root surface cells experienced severe damage,and showed significant differences in the total root length,total root projection area,root tips,root forks,and total root surface area compared to the control group.qRT-PCR analysis revealed that MdDEF3 and MdDEF25 were triggered in response to F.solani infection in apples.Subcellular localization showed specific expression of the MdDEF3-YFP and MdDEF25-YFP proteins on the cell membrane.Overexpressing theMdDEF25-YFP fusiongene enhanced resistance against F.solani in apple,providing a new strategy for the future prevention and biological control of apple replantdisease.展开更多
表面增强拉曼散射(SERS)技术在农药残留的检测方面具有很大的潜力,但在痕量和定量分析方面仍存在局限性。提出了一种基于Au@4-ATP@Au凸多面纳米颗粒(NCPs-Au@4-ATP@Au)为增强基底的农药检测方法。XRD结果表明,由于探针分子对金前驱的选...表面增强拉曼散射(SERS)技术在农药残留的检测方面具有很大的潜力,但在痕量和定量分析方面仍存在局限性。提出了一种基于Au@4-ATP@Au凸多面纳米颗粒(NCPs-Au@4-ATP@Au)为增强基底的农药检测方法。XRD结果表明,由于探针分子对金前驱的选择性和诱导性,NCPs-Au@4-ATP@Au纳米颗粒与球形金纳米颗粒晶面结构信息有明显差异,具体体现在(200)处的强反射峰。结合扫描电镜与吸收光谱可以确定,NCPs-Au@4-ATP@Au同时具备球形与多面体结构特征。吸收峰较球形金纳米颗粒有明显红移,更加接近激发光波长,这在理论上更有利于SERS信号的增强。实验证明,以表面包覆高指数晶面,同时内嵌4-ATP作为探针分子的NCPs-Au@4-ATP@Au为增强基底,农药多菌灵(CBZ)的检测限(LODs)达到0.66 nmol·L^(-1)。通过对CBZ分子的拉曼与SERS光谱位移分析可以初步确定,CBZ分子是通过NH键和CO键吸附于金纳米颗粒上。Au@4-ATP@Au利用多凸面结构体提高灵敏度的同时,以4-ATP作为定标信号,归一后光谱稳定性和时效性也得到改善。内标峰强度矫正后光谱稳定性的相对标准偏差(relative standard deviation,RSD)低至7.03%,半个月内信号强度仅降低5.87%,RSD为2.94%。结果表明,NCPs-Au@4-ATP@Au提高了SERS在农药检测方面的痕量和定量检测能力,该基底有望推动SERS在实际中的应用。展开更多
基金supported by a project grant from the Key Research and Development and Promotion Projects of Henan Province,China(212102110113)the Special Fund for Henan Agriculture Research System,China(HARS-22-09-Z2).
文摘Apple replant disease is a complex soil syndrome that occurs when the same fields are repeatedly utilized for apple orchard cultivation.It can be caused by various pathogens,and Fusarium solani is the main pathogen.Fusarium solani disrupts the structure and function of the orchard soil ecosystem and inhibits the growth and development of apple trees,significantly impacting the quality and yield of apples.In this study,we conducted a transcriptome comparison between uninoculated apple saplings and those inoculated with F:solani.The differentially expressed genes were mainly enriched in processes such as response to symbiotic fungus.Plant defensins are antimicrobial peptides,but their roles during F.solani infection remain unclear.We performed a genome-wide identification of apple defensin genes and identified 25 genes with the conserved motif of eight cysteine residues.In wildtype apple rootstock inoculated with F.solani,the root surface cells experienced severe damage,and showed significant differences in the total root length,total root projection area,root tips,root forks,and total root surface area compared to the control group.qRT-PCR analysis revealed that MdDEF3 and MdDEF25 were triggered in response to F.solani infection in apples.Subcellular localization showed specific expression of the MdDEF3-YFP and MdDEF25-YFP proteins on the cell membrane.Overexpressing theMdDEF25-YFP fusiongene enhanced resistance against F.solani in apple,providing a new strategy for the future prevention and biological control of apple replantdisease.
文摘表面增强拉曼散射(SERS)技术在农药残留的检测方面具有很大的潜力,但在痕量和定量分析方面仍存在局限性。提出了一种基于Au@4-ATP@Au凸多面纳米颗粒(NCPs-Au@4-ATP@Au)为增强基底的农药检测方法。XRD结果表明,由于探针分子对金前驱的选择性和诱导性,NCPs-Au@4-ATP@Au纳米颗粒与球形金纳米颗粒晶面结构信息有明显差异,具体体现在(200)处的强反射峰。结合扫描电镜与吸收光谱可以确定,NCPs-Au@4-ATP@Au同时具备球形与多面体结构特征。吸收峰较球形金纳米颗粒有明显红移,更加接近激发光波长,这在理论上更有利于SERS信号的增强。实验证明,以表面包覆高指数晶面,同时内嵌4-ATP作为探针分子的NCPs-Au@4-ATP@Au为增强基底,农药多菌灵(CBZ)的检测限(LODs)达到0.66 nmol·L^(-1)。通过对CBZ分子的拉曼与SERS光谱位移分析可以初步确定,CBZ分子是通过NH键和CO键吸附于金纳米颗粒上。Au@4-ATP@Au利用多凸面结构体提高灵敏度的同时,以4-ATP作为定标信号,归一后光谱稳定性和时效性也得到改善。内标峰强度矫正后光谱稳定性的相对标准偏差(relative standard deviation,RSD)低至7.03%,半个月内信号强度仅降低5.87%,RSD为2.94%。结果表明,NCPs-Au@4-ATP@Au提高了SERS在农药检测方面的痕量和定量检测能力,该基底有望推动SERS在实际中的应用。