The dominant wavelength range of edge impurity emissions moves from the visible range to the vacuum ultraviolet(VUV)range,as heating power increasing in the Experimental Advanced Superconducting Tokamak(EAST).The meas...The dominant wavelength range of edge impurity emissions moves from the visible range to the vacuum ultraviolet(VUV)range,as heating power increasing in the Experimental Advanced Superconducting Tokamak(EAST).The measurement provided by the existing visible spectroscopies in EAST is not sufficient for impurity transport studies for high-parameters plasmas.Therefore,in this study,a VUV spectroscopy is newly developed to measure edge impurity emissions in EAST.One Seya-Namioka VUV spectrometer(McPherson 234/302)is used in the system,equipped with a concave-corrected holographic grating with groove density of 600 grooves mm-1.Impurity line emissions can be observed in the wavelength range ofλ=50-700 nm,covering VUV,near ultraviolet and visible ranges.The observed vertical range is Z=-350-350 mm.The minimum sampling time can be set to 5 ms under full vertical binning(FVB)mode.VUV spectroscopy has been used to measure the edge impurity emission for the 2019 EAST experimental campaign.Impurity spectra are identified for several impurity species,i.e.,lithium(Li),carbon(C),oxygen(O),and iron(Fe).Several candidates for tungsten(W)lines are also measured but their clear identification is very difficult due to a strong overlap with Fe lines.Time evolutions of impurity carbon emissions of CⅡat 134.5 nm and CⅢat 97.7 nm are analyzed to prove the system capability of time-resolved measurement.The measurements of the VUV spectroscopy are very helpful for edge impurity transport study in the high-parameters plasma in EAST.展开更多
Spectral measurement of tungsten(W)impurity is essential to study impurity transport.Therefore,an X-ray crystal spectrometer(XCS)on EAST was used to measure the line spectra from highly ionized W ions.On EAST,both pol...Spectral measurement of tungsten(W)impurity is essential to study impurity transport.Therefore,an X-ray crystal spectrometer(XCS)on EAST was used to measure the line spectra from highly ionized W ions.On EAST,both poloidal XCS and tangential XCS have been developed to measure the plasma temperature as well as the rotation velocity.Recently,He-like and H-like argon spectra have also been obtained using a two-crystal setup.W lines are identified in this study.Through a careful analysis,the W lines of 3.9336,3.9321,and 3.664(A)are found to be diffracted by He-like or H-like crystals.The lines are confirmed with the NIST database.We also calculated the ion temperature with Doppler broadening of these lines.The ion temperature from the W lines is entirely consistent with that from Ar line spectra.The measurement of these W line spectra could be used to study W impurity transport in future work.展开更多
Direct measurements of the intrinsic torque profile in L-mode plasmas on the EAST tokamak have been performed using the balanced neutral beam injection.Co-and counter-current neutral beams are modulated to balance the...Direct measurements of the intrinsic torque profile in L-mode plasmas on the EAST tokamak have been performed using the balanced neutral beam injection.Co-and counter-current neutral beams are modulated to balance the intrinsic and externally injected torques, which result in the rotation profile close to zero and flat.The experimental results show that the intrinsic torque derived from momentum balance equations is found to be in the co-current direction, peaked in the plasma edge and negligibly small in the core.展开更多
基金the National Magnetic Confinement Fusion Science Program of China(Nos.2017YFE0301300 and 2018YFE0301100)National Natural Science Foundation of China(Nos.11805231,11705151)+4 种基金ASIPP Science and Research Grant(No.DSJJ-17-03)Key Program of Research and Development of Hefei Science Center(No.2017HSC-KPRD002)Anhui Provincial Natural Sci-ence Foundation(Nos.1808085QA14 and 1908085J01)Instrument Developing Project of the Chinese Academy of Sciences(No.YJKYYQ20180013)Collaborative Innovation Program of Hefei Science Center,CAS(No.2019HSC-CIP005).
文摘The dominant wavelength range of edge impurity emissions moves from the visible range to the vacuum ultraviolet(VUV)range,as heating power increasing in the Experimental Advanced Superconducting Tokamak(EAST).The measurement provided by the existing visible spectroscopies in EAST is not sufficient for impurity transport studies for high-parameters plasmas.Therefore,in this study,a VUV spectroscopy is newly developed to measure edge impurity emissions in EAST.One Seya-Namioka VUV spectrometer(McPherson 234/302)is used in the system,equipped with a concave-corrected holographic grating with groove density of 600 grooves mm-1.Impurity line emissions can be observed in the wavelength range ofλ=50-700 nm,covering VUV,near ultraviolet and visible ranges.The observed vertical range is Z=-350-350 mm.The minimum sampling time can be set to 5 ms under full vertical binning(FVB)mode.VUV spectroscopy has been used to measure the edge impurity emission for the 2019 EAST experimental campaign.Impurity spectra are identified for several impurity species,i.e.,lithium(Li),carbon(C),oxygen(O),and iron(Fe).Several candidates for tungsten(W)lines are also measured but their clear identification is very difficult due to a strong overlap with Fe lines.Time evolutions of impurity carbon emissions of CⅡat 134.5 nm and CⅢat 97.7 nm are analyzed to prove the system capability of time-resolved measurement.The measurements of the VUV spectroscopy are very helpful for edge impurity transport study in the high-parameters plasma in EAST.
基金the National Magnetic Confinement Fusion Science Program of China(Nos.2017YFE0301300 and 2018YFE0301100)the Key Program of Research and Development of the Hefei Science Center(No.2017HSC-KPRD002)+7 种基金National Natural Science Foundation of China(Nos.11805231 and 11705151)the ASIPP Science and Research Grant(No.DSJJ-17-03)the Anhui Provincial Natural Science Foundation(Nos.1808085QA14 and 1908085J01)the Instrument Developing Project of the Chi-nese Academy of Sciences(No.YJKYYQ20180013)the Collaborative Innovation Program of Hefei Science Center,CAS(No.2019HSC-CIP005)the Nature Science Foundation of Hunan Province(2017JJ3268)the Hunan Nuclear Fusion International Science and Technology Innovation Coopera-tion Base(No.2018WK4009)the Key Laboratory of Magnetic Confinement Nuclear Fusion Research in Hengyang(No.2018KJ108).
文摘Spectral measurement of tungsten(W)impurity is essential to study impurity transport.Therefore,an X-ray crystal spectrometer(XCS)on EAST was used to measure the line spectra from highly ionized W ions.On EAST,both poloidal XCS and tangential XCS have been developed to measure the plasma temperature as well as the rotation velocity.Recently,He-like and H-like argon spectra have also been obtained using a two-crystal setup.W lines are identified in this study.Through a careful analysis,the W lines of 3.9336,3.9321,and 3.664(A)are found to be diffracted by He-like or H-like crystals.The lines are confirmed with the NIST database.We also calculated the ion temperature with Doppler broadening of these lines.The ion temperature from the W lines is entirely consistent with that from Ar line spectra.The measurement of these W line spectra could be used to study W impurity transport in future work.
基金supported by the National Key Research and Development Program of China(Nos.2017YFE0301300 and 2017YFE0302000)Key Program of Research and Development of Hefei Science Center,CAS(No.2017HSCKPRD002)+2 种基金Distinguished Young Scholar of Anhui Provincial Natural Science Foundation(1908085J01)the Key Projects of Hunan Provincial Department of Education(18A238)the Key Laboratory of Magnetic Confinement Nuclear Fusion Research in Hengyang(2018KJ108)。
文摘Direct measurements of the intrinsic torque profile in L-mode plasmas on the EAST tokamak have been performed using the balanced neutral beam injection.Co-and counter-current neutral beams are modulated to balance the intrinsic and externally injected torques, which result in the rotation profile close to zero and flat.The experimental results show that the intrinsic torque derived from momentum balance equations is found to be in the co-current direction, peaked in the plasma edge and negligibly small in the core.