In-Ga-Zn-O(IGZO) channel based thin-film transistors(TFT), which exhibit high on-off current ratio and relatively high mobility, has been widely researched due to its back end of line(BEOL)-compatible potential for th...In-Ga-Zn-O(IGZO) channel based thin-film transistors(TFT), which exhibit high on-off current ratio and relatively high mobility, has been widely researched due to its back end of line(BEOL)-compatible potential for the next generation dynamic random access memory(DRAM) application. In this work, thermal atomic layer deposition(TALD) indium gallium zinc oxide(IGZO) technology was explored. It was found that the atomic composition and the physical properties of the IGZO films can be modulated by changing the sub-cycles number during atomic layer deposition(ALD) process. In addition, thin-film transistors(TFTs) with vertical channel-all-around(CAA) structure were realized to explore the influence of different IGZO films as channel layers on the performance of transistors. Our research demonstrates that TALD is crucial for high density integration technology, and the proposed vertical IGZO CAA-TFT provides a feasible path to break through the technical problems for the continuous scale of electronic equipment.展开更多
The Budunhua Cu deposit is located in the Tuquan ore-concentrated area of the southern Great Xing’an Range,NE China.This deposit includes the southern Jinjiling and northern Kongqueshan ore blocks,separated by the Bu...The Budunhua Cu deposit is located in the Tuquan ore-concentrated area of the southern Great Xing’an Range,NE China.This deposit includes the southern Jinjiling and northern Kongqueshan ore blocks,separated by the Budunhua granitic pluton.Cu mineralization occurs mainly as stockworks or veins in the outer contact zone between tonalite porphyry and Permian metasandstone.The ore-forming process can be divided into four stages involving stage Ⅰ quartz-pyrite-arsenopyrite;stage Ⅱ quartz-pyrite-chalcopyrite-pyrrhotite;stage Ⅲ quartz--polynetallic sulfides;and stage IV quartz-calcite.Three types of fluid inclusions(FIs) can be distinguished in the Budunhua deposit:liquid-rich two-phase aqueous FIs(L-type),vapour-rich aqueous FIs(V-type),and daughter mineral-bearing multi-phase FIs(S-type).Quartz of stages Ⅰ-Ⅲ contains all types of FIs,whereas only L-type FIs are evident in stage Ⅳ veins.The coexisting V-and S-type FIs of stages Ⅰ-Ⅲ have similar homogenization temperatures but contrasting salinities,which indicates that fluid boiling occurred.The FIs of stages Ⅰ,Ⅱ,Ⅲ,and Ⅳyield homogenization temperatures of 265-396℃,245-350℃,200-300℃,and 90-228℃ with salinities of3.4-44.3 wt.%,2.9-40.2 wt.%,1.4-38.2 wt.%,and 0.9-9.2 wt.% NaCl eqv.,respectively.Ore-forming fluids of the Budunhua deposit are characterized by high temperatures,moderate salinities,and relatively oxidizing conditions typical of an H2 O-NaCl fluid system.Mineralization in the Budunhua deposit occurred at a depth of0.3-1.5 km,with fluid boiling and mixing likely being responsible for ore precipitation.C-H-O-S-Pb isotope studies indicate a predominantly magmatic origin for the ore-forming fluids and materials.LA-ICP-MS zircon U-Pb analyses indicate that ore-forming tonalite porphyry and post-ore dioritic porphyrite were formed at 151.1±1.1 Ma and 129.9±1.9 Ma,respectively.Geochemical data imply that the primary magma of the tonalite porphyry formed through partial melting of Neoproterozoic lower crust.On the basis of available evidence,we suggest that the Budunhua deposit is a porphyry ore system that is spatially,temporally,and genetically associated with tonalite porphyry and formed in a post-collision extensional setting following closure of the Mongol-Okhotsk Ocean.展开更多
The detrimental effect of imprint,which can cause misreading problem,has hindered the application of ferroelectric HfO_(2).In this work,we present results of a comprehensive reliability evaluation of Hf_(0.5)Zr_(0.5)O...The detrimental effect of imprint,which can cause misreading problem,has hindered the application of ferroelectric HfO_(2).In this work,we present results of a comprehensive reliability evaluation of Hf_(0.5)Zr_(0.5)O_(2)-based ferroelectric random access memory.The influence of imprint on the retention and endurance is demonstrated.Furthermore,a solution in circuity is pro-posed to effectively solve the misreading problem caused by imprint.展开更多
The Meng’entaolegai Ag-Pb-Zn vein-type deposit in Inner Mongolia,NE China is hosted in biotite/muscovite granite.This deposit includes the western(Zn-rich,deepest),middle(Zn-Pb rich)and eastern(Pb-Ag-rich,shallowest)...The Meng’entaolegai Ag-Pb-Zn vein-type deposit in Inner Mongolia,NE China is hosted in biotite/muscovite granite.This deposit includes the western(Zn-rich,deepest),middle(Zn-Pb rich)and eastern(Pb-Ag-rich,shallowest)ore-blocks.To better understand the metallogenic processes in ore district,we have undertaken a series of studies including fluid inclusion microthermometry,H-O-S-Pb isotope compositions and thermodynamic modeling.Based on fluid inclusion petrography,microthermometry results and HO isotope compositions,the ore-forming H2O-NaCl fluid inclusions are characterized by medium temperature and medium salinity.And two kinds of fluid processes(boiling in western and middle ore-block and fluid mixing in the eastern ore-block)were identified to explain the ore fluid evolution.More importantly,log ?O2-pH diagrams of δ^34S contours with the stability fields of Fe-and Cu-,Zn-,Pb-,and Ag-bearing minerals were constructed to restore the physicochemical conditions of ore-forming fluid in the western(270℃ and 80 bars),middle(250℃ and 70 bars),and eastern(230℃ and 50 bars)ore-blocks.As a result,the ore-forming conditions in the western and middle ore-block were similar.In the eastern ore-block,the fluids may have changed from acidic,S-poor and δ^34S(ΣS)≈2.8 to neutral,S-richer and δ^34S(ΣS)≈0.5,which imply that neutral S-rich meteoric water was mixed with the magmatic fluid.Meanwhile,the activity of Ag+was estimated to be about 10 ppm–9 ppm in the middle ore-block,but in the eastern ore-block it was about^10 ppm–12 ppm.We proposed that the key for Ag ore deposition was likely to be neutralization led by fluid mixing.展开更多
Background:There is growing evidence indicating that the microbial communities that dwell on the human ocular surface are crucially important for ocular surface health and disease.Little is known about interspecies in...Background:There is growing evidence indicating that the microbial communities that dwell on the human ocular surface are crucially important for ocular surface health and disease.Little is known about interspecies interactions,functional profiles,and strain heterogeneity across individuals in healthy ocular surface microbiomes.Methods:To comprehensively characterize the strain heterogeneity,cooccurrence network,taxonomic composition and functional profile of the healthy ocular surface microbiome,we performed shotgun metagenomics sequencing on ocular surface mucosal membrane swabs of 17 healthy volunteers.Results:The healthy ocular surface microbiome was classified into 12 phyla,70 genera,and 140 species.The number of species in each healthy ocular surface microbiome ranged from 6 to 47,indicating differences in microbial diversity among individuals.The species with high relative abundances and high positivity rates were Streptococcus pyogenes,Staphylococcus epidermidis,Propionibacterium acnes,Corynebacterium accolens,and Enhydrobacter aerosaccus.A correlation network analysis revealed a competitive interaction of Staphylococcus epidermidis with Streptococcus pyogenes in ocular surface microbial ecosystems.Staphylococcus epidermidis and Streptococcus pyogenes revealed phylogenetic diversity among different individuals.At the functional level,the pathways related to transcription were the most abundant.We also found that there were abundant lipid and amino acid metabolism pathways in the healthy ocular surface microbiome.Conclusion:This study explored the strain heterogeneity,cooccurrence network,taxonomic composition,and functional profile of the healthy ocular surface microbiome.These findings have important significance for the future development of probiotic-based eye therapeutic drugs.展开更多
This article reviews advanced process and electron device technology of integrated circuits,including recent featuring progress and potential solutions for future development.In 5 years,for pushing the performance of ...This article reviews advanced process and electron device technology of integrated circuits,including recent featuring progress and potential solutions for future development.In 5 years,for pushing the performance of fin field-effect transistors(FinFET)to its limitations,several processes and device boosters are provided.Then,the three-dimensional(3 D)integration schemes with alternative materials and device architectures will pave paths for future technology evolution.Finally,it could be concluded that Moore’s law will undoubtedly continue in the next 15 years.展开更多
基金funded in part by the National Key R&D Program of China(Grant No.2022YFB3606900)in part by the National Natural Science of China(Grant No.62004217)。
文摘In-Ga-Zn-O(IGZO) channel based thin-film transistors(TFT), which exhibit high on-off current ratio and relatively high mobility, has been widely researched due to its back end of line(BEOL)-compatible potential for the next generation dynamic random access memory(DRAM) application. In this work, thermal atomic layer deposition(TALD) indium gallium zinc oxide(IGZO) technology was explored. It was found that the atomic composition and the physical properties of the IGZO films can be modulated by changing the sub-cycles number during atomic layer deposition(ALD) process. In addition, thin-film transistors(TFTs) with vertical channel-all-around(CAA) structure were realized to explore the influence of different IGZO films as channel layers on the performance of transistors. Our research demonstrates that TALD is crucial for high density integration technology, and the proposed vertical IGZO CAA-TFT provides a feasible path to break through the technical problems for the continuous scale of electronic equipment.
基金This research was supported by selfdetermined foundation of MNR Key Laboratory of Mineral Resources Evaluation in Northeast Asia(No.DBY-ZZ-18-12).
文摘The Budunhua Cu deposit is located in the Tuquan ore-concentrated area of the southern Great Xing’an Range,NE China.This deposit includes the southern Jinjiling and northern Kongqueshan ore blocks,separated by the Budunhua granitic pluton.Cu mineralization occurs mainly as stockworks or veins in the outer contact zone between tonalite porphyry and Permian metasandstone.The ore-forming process can be divided into four stages involving stage Ⅰ quartz-pyrite-arsenopyrite;stage Ⅱ quartz-pyrite-chalcopyrite-pyrrhotite;stage Ⅲ quartz--polynetallic sulfides;and stage IV quartz-calcite.Three types of fluid inclusions(FIs) can be distinguished in the Budunhua deposit:liquid-rich two-phase aqueous FIs(L-type),vapour-rich aqueous FIs(V-type),and daughter mineral-bearing multi-phase FIs(S-type).Quartz of stages Ⅰ-Ⅲ contains all types of FIs,whereas only L-type FIs are evident in stage Ⅳ veins.The coexisting V-and S-type FIs of stages Ⅰ-Ⅲ have similar homogenization temperatures but contrasting salinities,which indicates that fluid boiling occurred.The FIs of stages Ⅰ,Ⅱ,Ⅲ,and Ⅳyield homogenization temperatures of 265-396℃,245-350℃,200-300℃,and 90-228℃ with salinities of3.4-44.3 wt.%,2.9-40.2 wt.%,1.4-38.2 wt.%,and 0.9-9.2 wt.% NaCl eqv.,respectively.Ore-forming fluids of the Budunhua deposit are characterized by high temperatures,moderate salinities,and relatively oxidizing conditions typical of an H2 O-NaCl fluid system.Mineralization in the Budunhua deposit occurred at a depth of0.3-1.5 km,with fluid boiling and mixing likely being responsible for ore precipitation.C-H-O-S-Pb isotope studies indicate a predominantly magmatic origin for the ore-forming fluids and materials.LA-ICP-MS zircon U-Pb analyses indicate that ore-forming tonalite porphyry and post-ore dioritic porphyrite were formed at 151.1±1.1 Ma and 129.9±1.9 Ma,respectively.Geochemical data imply that the primary magma of the tonalite porphyry formed through partial melting of Neoproterozoic lower crust.On the basis of available evidence,we suggest that the Budunhua deposit is a porphyry ore system that is spatially,temporally,and genetically associated with tonalite porphyry and formed in a post-collision extensional setting following closure of the Mongol-Okhotsk Ocean.
基金This research was supported by the National Key R&D Program of China(Grant No.2022YFB3606900)in part by the National Natural Science of China(Grant No.62004217).
文摘The detrimental effect of imprint,which can cause misreading problem,has hindered the application of ferroelectric HfO_(2).In this work,we present results of a comprehensive reliability evaluation of Hf_(0.5)Zr_(0.5)O_(2)-based ferroelectric random access memory.The influence of imprint on the retention and endurance is demonstrated.Furthermore,a solution in circuity is pro-posed to effectively solve the misreading problem caused by imprint.
基金We are grateful to the staff of the Analytical Laboratory in Beijing Research Institute of Uranium Geology,China National Nuclear Corporation(CNNC)for their advice and assistance in the isotope analysisThis work was financially supported by the Open Foundation of Key Laboratory of Mineral Resources Evaluation in Northeast Asiathe Ministry of Natural Resources of China.
文摘The Meng’entaolegai Ag-Pb-Zn vein-type deposit in Inner Mongolia,NE China is hosted in biotite/muscovite granite.This deposit includes the western(Zn-rich,deepest),middle(Zn-Pb rich)and eastern(Pb-Ag-rich,shallowest)ore-blocks.To better understand the metallogenic processes in ore district,we have undertaken a series of studies including fluid inclusion microthermometry,H-O-S-Pb isotope compositions and thermodynamic modeling.Based on fluid inclusion petrography,microthermometry results and HO isotope compositions,the ore-forming H2O-NaCl fluid inclusions are characterized by medium temperature and medium salinity.And two kinds of fluid processes(boiling in western and middle ore-block and fluid mixing in the eastern ore-block)were identified to explain the ore fluid evolution.More importantly,log ?O2-pH diagrams of δ^34S contours with the stability fields of Fe-and Cu-,Zn-,Pb-,and Ag-bearing minerals were constructed to restore the physicochemical conditions of ore-forming fluid in the western(270℃ and 80 bars),middle(250℃ and 70 bars),and eastern(230℃ and 50 bars)ore-blocks.As a result,the ore-forming conditions in the western and middle ore-block were similar.In the eastern ore-block,the fluids may have changed from acidic,S-poor and δ^34S(ΣS)≈2.8 to neutral,S-richer and δ^34S(ΣS)≈0.5,which imply that neutral S-rich meteoric water was mixed with the magmatic fluid.Meanwhile,the activity of Ag+was estimated to be about 10 ppm–9 ppm in the middle ore-block,but in the eastern ore-block it was about^10 ppm–12 ppm.We proposed that the key for Ag ore deposition was likely to be neutralization led by fluid mixing.
基金supported by the National Science and Technology Major Project(Grant No.2018ZX10201001).
文摘Background:There is growing evidence indicating that the microbial communities that dwell on the human ocular surface are crucially important for ocular surface health and disease.Little is known about interspecies interactions,functional profiles,and strain heterogeneity across individuals in healthy ocular surface microbiomes.Methods:To comprehensively characterize the strain heterogeneity,cooccurrence network,taxonomic composition and functional profile of the healthy ocular surface microbiome,we performed shotgun metagenomics sequencing on ocular surface mucosal membrane swabs of 17 healthy volunteers.Results:The healthy ocular surface microbiome was classified into 12 phyla,70 genera,and 140 species.The number of species in each healthy ocular surface microbiome ranged from 6 to 47,indicating differences in microbial diversity among individuals.The species with high relative abundances and high positivity rates were Streptococcus pyogenes,Staphylococcus epidermidis,Propionibacterium acnes,Corynebacterium accolens,and Enhydrobacter aerosaccus.A correlation network analysis revealed a competitive interaction of Staphylococcus epidermidis with Streptococcus pyogenes in ocular surface microbial ecosystems.Staphylococcus epidermidis and Streptococcus pyogenes revealed phylogenetic diversity among different individuals.At the functional level,the pathways related to transcription were the most abundant.We also found that there were abundant lipid and amino acid metabolism pathways in the healthy ocular surface microbiome.Conclusion:This study explored the strain heterogeneity,cooccurrence network,taxonomic composition,and functional profile of the healthy ocular surface microbiome.These findings have important significance for the future development of probiotic-based eye therapeutic drugs.
基金the support from the members of Integrated Circuit Advanced Process R&D Center,Institute of Microelectronics,Chinese Academy of Sciencessupported in part by the National Key Project of Science and Technology of China(No.2017ZX02315001-002)。
文摘This article reviews advanced process and electron device technology of integrated circuits,including recent featuring progress and potential solutions for future development.In 5 years,for pushing the performance of fin field-effect transistors(FinFET)to its limitations,several processes and device boosters are provided.Then,the three-dimensional(3 D)integration schemes with alternative materials and device architectures will pave paths for future technology evolution.Finally,it could be concluded that Moore’s law will undoubtedly continue in the next 15 years.