In this work,a modified polyurethane adhesive(PUA)was prepared to realize a convenient encapsulation strategy for lead sedimentation and attachable perovskite solar cells(A-PSCs).The modified PUA can completely self-h...In this work,a modified polyurethane adhesive(PUA)was prepared to realize a convenient encapsulation strategy for lead sedimentation and attachable perovskite solar cells(A-PSCs).The modified PUA can completely self-heal within 45 min at room temperature with an efficient lead ion-blocking rate of 99.3%.The PUA film can be coated on a metal electrode with slight efficiency improvement from 23.96%to 24.15%.The thermal stability at 65℃and the humidity stability at 55%relative humidity(RH)are superior to the devices encapsulated with polyisobutylene.The PUA film has strong adhesion to the flexible substrate and the initial efficiency of the flexible perovskite module(17.2%)encapsulated by PUA remains 92.6%within 1825 h.These results suggest that PUA encapsulation is universal for rigid and flexible PSCs with enhanced stability and low lead hazards.Moreover,it was found that flexible PSCs can be well attached to various substrates with PUA,providing a facile route for the A-PSCs in various scenarios without additional encapsulation and installation.展开更多
Despite the high efficiency that has been achieved for the perovskite solar cells(PSCs),the hazardous lead leakage from the perovskite absorber layer is one of the crucial barriers still hindering its penetration into...Despite the high efficiency that has been achieved for the perovskite solar cells(PSCs),the hazardous lead leakage from the perovskite absorber layer is one of the crucial barriers still hindering its penetration into the commercial market for a large-scale installation.Herein,we report a novel low-cost and biodegradable lead sequestration layer with high compatibility for up-scalable encapsulation of PSCs.Through a precisely designed cross-linking reaction of chemical agents,the as-made biodegradable chitosan composite film shows enhanced mechanical strength,chemical stability,and lead adsorption capacity.The designed encapsulation strategy reduces over 99.99% lead leakage to <2 ppb under varied simulations of weather conditions(hail,rain,or flood),which meet the safe level of drinking water set by the US Environmental Protection Agency(EPA).Moreover,the PSC efficiency is improved from 21.91% to22.82% due to the improved light absorption from the printed biodegradable lead absorption film.Finally,we present a prototype process of accumulation and recycling of lead compounds in PSCs derbies via the biodegradation process.Based on the low-cost biodegradable lead sequestration film,this environmental-friendly encapsulation strategy could address the lead leakage issue for further commercialization of PSCs.展开更多
Human pluripotent stem cells provide an inexhaustible model to study human embryogenesis in vitro.Recent studies have provided diverse models to generate human blastoids by self-organization of different pluripotent s...Human pluripotent stem cells provide an inexhaustible model to study human embryogenesis in vitro.Recent studies have provided diverse models to generate human blastoids by self-organization of different pluripotent stem cells or somatic reprogramming intermediates.However,whether blastoids can be generated from other cell types or whether they can recapitulate postimplantation development in vitro is unknown.Here,we develop a strategy to generate human blastoids from heterogeneous intermediates with epiblast,trophectoderm,and primitive endoderm signatures of the primed-to-naïve conversion process,which resemble natural blastocysts in morphological architecture,composition of cell lineages,transcriptome,and lineage differentiation potential.In addition,these blastoids reflect many features of human peri-implantation and pregastrulation development when further cultured in an in vitro 3D culture system.In summary,our study provides an alternative strategy to generate human blastoids and offers insights into human early embryogenesis by modeling peri-and postimplantation development in vitro.展开更多
As a convenient,low-cost and up-scalable solution route,chemical bath deposition(CBD)has exhibited impressive advantages in fabricating electron transporting materials like SnO_(2),achieving record efficien-cies for r...As a convenient,low-cost and up-scalable solution route,chemical bath deposition(CBD)has exhibited impressive advantages in fabricating electron transporting materials like SnO_(2),achieving record efficien-cies for regular n-i-p perovskite solar cells(PSCs).However,for the hysteresis-free and potentially more stable inverted p-i-n PSCs,CBD processing is rarely studied to improve the device performance.In this work,we first present a CBD planar NiO x film as the efficient hole transport layer for the inverted per-ovskite solar cells(IPSCs).The morphologies and semiconducting properties of the NiO x film can be ad-justed by varying the concentration of[Ni(H 2 O)x(NH 3)6-x]2+cation via in-situ monitoring of the CBD re-action process.The characterizations of ultraviolet photoelectron spectroscopy,transient absorption spec-troscopy,time-resolved photoluminescence suggest that the CBD planar NiO x film possesses enhanced conductivity and aligned energy band levels with perovskite,which benefits for the charge transport in the IPSCs.The devices based on planar NiO x at 50°C and low nickel precursor concentration achieved an enhanced efficiency from 16.14%to 18.17%.This work established an efficient CBD route to fabricate planar NiO x film for PSCs and paved the way for high performance PSCs with CBD-prepared hole transporting materials.展开更多
基金financially supported by the China National Key Research and Development Plan Project(2019YFE0107200)the National Natural Science Foundation of China(52072284)+1 种基金Joint Funds of Natural Science Foundation of Hubei Province(2023cFD087)Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory(XHD2020-001)
文摘In this work,a modified polyurethane adhesive(PUA)was prepared to realize a convenient encapsulation strategy for lead sedimentation and attachable perovskite solar cells(A-PSCs).The modified PUA can completely self-heal within 45 min at room temperature with an efficient lead ion-blocking rate of 99.3%.The PUA film can be coated on a metal electrode with slight efficiency improvement from 23.96%to 24.15%.The thermal stability at 65℃and the humidity stability at 55%relative humidity(RH)are superior to the devices encapsulated with polyisobutylene.The PUA film has strong adhesion to the flexible substrate and the initial efficiency of the flexible perovskite module(17.2%)encapsulated by PUA remains 92.6%within 1825 h.These results suggest that PUA encapsulation is universal for rigid and flexible PSCs with enhanced stability and low lead hazards.Moreover,it was found that flexible PSCs can be well attached to various substrates with PUA,providing a facile route for the A-PSCs in various scenarios without additional encapsulation and installation.
基金financially supported by the National Key Research and Development Plan (2019YFE0107200)the National Natural Science Foundation of China (52072284)the Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory (XHD2020-001)。
文摘Despite the high efficiency that has been achieved for the perovskite solar cells(PSCs),the hazardous lead leakage from the perovskite absorber layer is one of the crucial barriers still hindering its penetration into the commercial market for a large-scale installation.Herein,we report a novel low-cost and biodegradable lead sequestration layer with high compatibility for up-scalable encapsulation of PSCs.Through a precisely designed cross-linking reaction of chemical agents,the as-made biodegradable chitosan composite film shows enhanced mechanical strength,chemical stability,and lead adsorption capacity.The designed encapsulation strategy reduces over 99.99% lead leakage to <2 ppb under varied simulations of weather conditions(hail,rain,or flood),which meet the safe level of drinking water set by the US Environmental Protection Agency(EPA).Moreover,the PSC efficiency is improved from 21.91% to22.82% due to the improved light absorption from the printed biodegradable lead absorption film.Finally,we present a prototype process of accumulation and recycling of lead compounds in PSCs derbies via the biodegradation process.Based on the low-cost biodegradable lead sequestration film,this environmental-friendly encapsulation strategy could address the lead leakage issue for further commercialization of PSCs.
基金the Ministry of Science and Technology of China(Nos.2021YFA1102000,2021YFC2700300,2019YFA0110000,and 2018YFA0108900)the National Natural Science Foundation of China(NSFC)(Nos.31721003,32022024,32270850,32100633,31871486,32070652,and 81630035)the Science and Technology Commission of Shanghai Municipality(Nos.19JC1415300 and 21JC1405500).
文摘Human pluripotent stem cells provide an inexhaustible model to study human embryogenesis in vitro.Recent studies have provided diverse models to generate human blastoids by self-organization of different pluripotent stem cells or somatic reprogramming intermediates.However,whether blastoids can be generated from other cell types or whether they can recapitulate postimplantation development in vitro is unknown.Here,we develop a strategy to generate human blastoids from heterogeneous intermediates with epiblast,trophectoderm,and primitive endoderm signatures of the primed-to-naïve conversion process,which resemble natural blastocysts in morphological architecture,composition of cell lineages,transcriptome,and lineage differentiation potential.In addition,these blastoids reflect many features of human peri-implantation and pregastrulation development when further cultured in an in vitro 3D culture system.In summary,our study provides an alternative strategy to generate human blastoids and offers insights into human early embryogenesis by modeling peri-and postimplantation development in vitro.
基金supported by the National Key Re-search and Development Plan(2017YFE0131900,2019YFE0107200)the National Natural Science Foundation of China(52072284,21875178,91963209)+1 种基金the Science and Technology Department of Hubei Province(2020CFB427)Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory(XHD2020-001).
文摘As a convenient,low-cost and up-scalable solution route,chemical bath deposition(CBD)has exhibited impressive advantages in fabricating electron transporting materials like SnO_(2),achieving record efficien-cies for regular n-i-p perovskite solar cells(PSCs).However,for the hysteresis-free and potentially more stable inverted p-i-n PSCs,CBD processing is rarely studied to improve the device performance.In this work,we first present a CBD planar NiO x film as the efficient hole transport layer for the inverted per-ovskite solar cells(IPSCs).The morphologies and semiconducting properties of the NiO x film can be ad-justed by varying the concentration of[Ni(H 2 O)x(NH 3)6-x]2+cation via in-situ monitoring of the CBD re-action process.The characterizations of ultraviolet photoelectron spectroscopy,transient absorption spec-troscopy,time-resolved photoluminescence suggest that the CBD planar NiO x film possesses enhanced conductivity and aligned energy band levels with perovskite,which benefits for the charge transport in the IPSCs.The devices based on planar NiO x at 50°C and low nickel precursor concentration achieved an enhanced efficiency from 16.14%to 18.17%.This work established an efficient CBD route to fabricate planar NiO x film for PSCs and paved the way for high performance PSCs with CBD-prepared hole transporting materials.