BACKGROUND Through deeper understanding of targetable driver mutations in non-small-cell lung cancer(NSCLC)over the past years,some patients with driver mutations have benefited from the targeted molecular therapies.A...BACKGROUND Through deeper understanding of targetable driver mutations in non-small-cell lung cancer(NSCLC)over the past years,some patients with driver mutations have benefited from the targeted molecular therapies.Although the anaplastic lymphoma kinase and BRAF mutations are not frequent subtypes in NSCLC,the availability of several targeted-drugs has been confirmed through a series of clinical trials.But little is clear about the proper strategy in rare BRAF G469A mutation,not to mention co-exhibition of anaplastic lymphoma kinase and BRAF G469A mutations,which is extremely rare in NSCLC.CASE SUMMARY We present a patient to stage IVA lung adenocarcinoma with coexisting echinoderm microtubule associated protein like-4 rearrangement and BRAF G469A mutation.She received several targeted drugs with unintended resistance and suffered from unbearable adverse events.CONCLUSION Due to the rarity of co-mutations,the case not only enriches the limited literature on NSCLC harbouring BRAF G469A and echinoderm microtubule associated protein like-4 mutations,but also suggests the efficacy and safety of specific multiple-drug therapy in such patients.展开更多
Cigar line Beinhart 1000-1 has effective durable resistance to black shank(BS) and is considered one of the most resistant sources in tobacco(Nicotiana tabacum L.). To investigate the inheritance and identification of...Cigar line Beinhart 1000-1 has effective durable resistance to black shank(BS) and is considered one of the most resistant sources in tobacco(Nicotiana tabacum L.). To investigate the inheritance and identification of stable quantitative trait loci(QTL) for BS response, F2,BC1 F2 individuals and BC1 F2:3 lines were produced from a cross between Beinhart 1000-1 and Xiaohuangjin 1025. Two major quantitative trait loci(M-QTL) named qBS7 and qBS17 were repeatedly detected under different conditions. QTL qBS7 was mapped to the region between PT30174 and PT60621 and explained 17.40%–25.60% of the phenotypic variance under different conditions. The other QTL qBS17 in interval PT61564–PT61538 of linkage group 17 was detected in a BC1 F2 population in the field and in BC1 F2:3 in both the field and at the seedling stage, explaining 6.90% to 11.60% of the phenotypic variance. The results improve our understanding of the inheritance of resistance to BS and provide information that can be used in marker-assisted breeding.展开更多
This paper builds the formulations of hyperplastic damage theory for rate-independent geomaterials to describe the bulk and the likely damage behavior of granular materials. Using 2 kinematic internal variables and th...This paper builds the formulations of hyperplastic damage theory for rate-independent geomaterials to describe the bulk and the likely damage behavior of granular materials. Using 2 kinematic internal variables and the conjugates, dissipative and yield function can be reasonably introduced. A systematic constitutive presentation of 32 possible ways within the thermodynamical damage framework is presented, which entirely formulates the constitutive behavior through two scalar thermodynamic potentials. Combining the four common thermodynamical energy functions, two independent kinematic internal variables and the accordingly generalized stress are introduced to describe the damage behavior and structural rearrangement of the granules for any bulk deformation. A few Legendre transformations are used to establish the links between energy functions so that the complex incremental response of geomaterials can be entirely established from these four energy functions. The constitutive relations are built with the thermodynamics laws, which account for the important structural aspects of geomaterials. Some examples axe provided in the appendix to validate the applicability and implementation of the framework. This theory is based on previous work by Houlsby et al., and extends to the multi-mechanisms description. This framework paves a way in developing models for specific geomaterials with an examinable basis.展开更多
Naturally deposited or residual soils exhibit more complicated behavior than remolded clays. A dual-surface damage model for structured soils is developed based on the thermodynamics framework established in our first...Naturally deposited or residual soils exhibit more complicated behavior than remolded clays. A dual-surface damage model for structured soils is developed based on the thermodynamics framework established in our first paper. The shift stresses and the transformation between the generalized dissipative stress space and actual stress space are established following a systematic procedure. The corresponding constitutive behavior of the proposed model is determined, which reflects the internal structural configuration and damage behavior for geomaterials. Four evolution variables κj^i(i=D, R;j=V, S) and the basic parameters λ, s, v and e0 are introduced to account for the progressive loss of internal structure for natural clays. A series of fully triaxial tests and isotropic compression tests are performed for structured and reconstituted samples of Beijing and Zhengzhou natural clays. The validation of the proposed model is examined by comparing the numerical results with the experimental data.展开更多
The Himalayan-Tibetan orogen is the youngest and arguably most spectacular of all the continent-continent collisional belts on the Earth. There are not only north-south extrusions but also east-west extensions in the ...The Himalayan-Tibetan orogen is the youngest and arguably most spectacular of all the continent-continent collisional belts on the Earth. There are not only north-south extrusions but also east-west extensions in the Tibetan Plateau. All these phenomena are the results of the Indian plate subducting into the Eurasia plate about 70 Ma ago (Yin and Harrison, 2000), but the deep dynamics mechanism is still an enigma. Exploring the crust and upper mantle structure of Tibetan plateau and revealing the process and the effect of collision are crucial for solving the puzzle of the Tibet uplift and the continent-continent collision. This research is based on the data from the 360km-long Dagze-Deqen-Domar profile, which can be divided into two sections. The Dagze-Deqen section traverses the Nyainqntanglha Mountains and the Yadong-Gulu rift, the biggest rift in the Tibet. The Deqen-Domar section crosses Lhasa terrane and Qiangtang terrane. We study the transverse density structure of the crust and mantle beneath the Dagze-Deqen-Domar profile using a joint gravity-seismic inversion technique in order to obtain the Moho and the asthenospheric configuration beneath the profile and understand the deep dynamics mechanism of the Yadong-Gulu rift.展开更多
The Sb6 Te4/VO2 multilayer thin films are prepared by magnetron sputtering and the potential application in phase change memory is investigated in detail. Compared with Sb6 Te4, Sb6 Te4/VO2 multilayer composite thin f...The Sb6 Te4/VO2 multilayer thin films are prepared by magnetron sputtering and the potential application in phase change memory is investigated in detail. Compared with Sb6 Te4, Sb6 Te4/VO2 multilayer composite thin films have higher phase change temperature and crystallization resistance, indicating better thermal stability and less power consumption. Also, Sb6 Te4/VO2 has a broader energy band of 1.58 eV and better data retention (125℃ for 103/). The crystallization is suppressed by the multilayer interfaces in Sbf Te4/VO2 thin film with a smaller rms surface roughness for Sbf Te4/VO2 than monolayer Sb4Te6. The picosecond laser technology is applied to study the phase change speed. A short crystallization time of 5.21 ns is realized for the Sb6Te4 (2nm)/VO2 (8nm) thin film. The Sb6 Te4/VO2 multilayer thin film is a potential and competitive phase change material for its good thermal stability and fast phase change speed.展开更多
In order to obtain information on the biodegradation potential of biofilms involved in the removal of natural estrogens by biological activated carbon (BAC) columns, batch degradation of estrone (E1) and 17β-estradio...In order to obtain information on the biodegradation potential of biofilms involved in the removal of natural estrogens by biological activated carbon (BAC) columns, batch degradation of estrone (E1) and 17β-estradiol (E2) at temperature of 5℃, 20℃ and 35℃ by biofilms from four BAC columns (packed with activated carbon of particle size ranging from 0.5 - 0.59 mm and 1.0 - 1.19 mm into two bed depths) was studied. The results indicated that E2 was degraded faster by than E1 at all three temperatures and with the increasing of temperature, the amount of E1 converted from E2 increased. By fitting observed concentration data with a first-order rate expression, the bio-mass based degradation rate constants (kVSS) for E1 and E2 under all experimental conditions were estimated and linear relationship between lnkVSS and 1/T (T = absolute temperature) was demonstrated, resulting that with the increasing of the experimental temperature, degradation rate of biofilms for both E1 and E2 increased, and the increasing rate for E2 was higher than that for E1.展开更多
[ Objective] This study aimed to establish a rapid, sensitive and specific method using reverse transcription loop-mediated isothermal amplification (RT-LAMP) technology to detect swine Japanese B encephalitis virus...[ Objective] This study aimed to establish a rapid, sensitive and specific method using reverse transcription loop-mediated isothermal amplification (RT-LAMP) technology to detect swine Japanese B encephalitis virus (JEV). [ Method ] Four specific LAMP primers were designed according to six loci the conservative region of JEV E gene sequence. Positive JEV RNA sample was used as a template for one-step amplification, and the reaction conditions and reaction system were optimized. [ Result] Experimental results showed that the established method had high sensitivity, with the detection limit of 0.5pg; specificity experi- ments indicated that the method had high specificity and there was no amplification reaction for other viral pathogens. The coincidence rate between detection results of RT-LAMP and RT-Nested-PCR was 90.9%. After RT-LAMP reaction, a chemiluminescent agent was added for visual observation, which greatly reduced the detection time. This method required no special equipment but only a water bath, which was a simple, sensitive and rapid detection method for swine Japanese B encephalitis virus and could be applied in primary laboratories. [ Conclusion] An RT-LAMP detection method for swine Japanese B encephalitis virus was successfully established and preliminarily applied in clinical practice.展开更多
In this work,we provide a comprehensive review on the formation,evolution,properties,and effects of supercritical geofluid.In Earth's interior,enhanced miscibility between H_(2)O and silicate by the addition of sp...In this work,we provide a comprehensive review on the formation,evolution,properties,and effects of supercritical geofluid.In Earth's interior,enhanced miscibility between H_(2)O and silicate by the addition of special components or by the increase of pressure and temperature gives rise to supercritical geofluid with a significant amount of both H_(2)O and silicate solute.The formation of supercritical geofluid in magmatic-hydrothermal systems,typified by pegmatite system,is governed by meltfluid critical curve.The formation of supercritical geofluid in metamorphic systems,typified by subducted slab,is governed by the second critical end point.Experimental results suggest that the presence of boron and fluorine in pegmatite system makes it possible to form supercritical geofluid at crustal depths,but the release of supercritical geofluid from subducted slab is withheld until almost 100 km depth.A major presence of both H_(2)O and depolymerized structural units(monomers,dimers,etc.)endows supercritical geofluid with unique physical properties including low density,low elastic moduli,low viscosity,high diffusivity,and high electrical conductivity.Supercritical geofluid can effectively mobilize a variety of elements even including high field strength elements and heavy rare earth elements.The chemical signatures of supercritical geofluid can be inherited by metasomatized mantle and mantle-derived melts,and this could give an explanation of the oxidation of arc magmas.Phase separation of supercritical geofluid through the mechanism of spinodal decomposition leads to formation of a melt network.Multiphase fluid inclusions recovered from subduction zone rocks and pegmatites are possible relics of supercritical geofluid.Supercritical geofluid can cause electrical anomaly and low seismic velocity near the top of subducted slab,and can be linked with intermediate-focus earthquakes.Supercritical geofluid may have played a crucial role in the formation of pegmatites and associated ore deposits.展开更多
The characterization of bio-aviation fuel composition is paramount for assessing biomass conversion processes and its suitability to meet international standards.Compared with one-dimensional gas chromatography mass s...The characterization of bio-aviation fuel composition is paramount for assessing biomass conversion processes and its suitability to meet international standards.Compared with one-dimensional gas chromatography mass spectrometry(1DGC-MS),comprehensive two-dimensional gas chromatography with mass spectrometry(GC×GC-MS)emerges as a promising analytical approach for bio-aviation fuel,offering enhanced separation,resolution,selectivity,and sensitivity.This study addresses the qualitative and quantitative analysis methods for both bulk components and trace fatty acid methyl ester(FAME)in bio-aviation fuel obtained by hydrogenation at 400℃ with Ni-Mo/γ-Al_(2)O_(3)&Meso-SAPO-11 as catalyst using GC×GC-MS.In bulk composition analysis,C1_(2) concentration was highest at 25.597%.Based on GC×GC-MS analysis platform,the quality control method of FAME in bio-aviation fuel was established.At the split ratio of 10:1,limits of detections of six FAMEs were 0.011–0.027 mg·kg^(–1),and limits of quantifications were 0.036–0.090 mg·kg^(–1),and the GC×GC-MS research platform had the ability to detect FAME from 2 to 5 mg·kg^(–1).The results showed that this bio-aviation fuel did not contain FAME.展开更多
基金Supported by the Medical Education Collaborative Innovation Fund of Jiangsu University,No.JDY2022015。
文摘BACKGROUND Through deeper understanding of targetable driver mutations in non-small-cell lung cancer(NSCLC)over the past years,some patients with driver mutations have benefited from the targeted molecular therapies.Although the anaplastic lymphoma kinase and BRAF mutations are not frequent subtypes in NSCLC,the availability of several targeted-drugs has been confirmed through a series of clinical trials.But little is clear about the proper strategy in rare BRAF G469A mutation,not to mention co-exhibition of anaplastic lymphoma kinase and BRAF G469A mutations,which is extremely rare in NSCLC.CASE SUMMARY We present a patient to stage IVA lung adenocarcinoma with coexisting echinoderm microtubule associated protein like-4 rearrangement and BRAF G469A mutation.She received several targeted drugs with unintended resistance and suffered from unbearable adverse events.CONCLUSION Due to the rarity of co-mutations,the case not only enriches the limited literature on NSCLC harbouring BRAF G469A and echinoderm microtubule associated protein like-4 mutations,but also suggests the efficacy and safety of specific multiple-drug therapy in such patients.
基金supported by grants from the Agricultural Science and Technology Innovation Program (ASTIP-TRIC01)National Natural Science Foundation of China (31571738)
文摘Cigar line Beinhart 1000-1 has effective durable resistance to black shank(BS) and is considered one of the most resistant sources in tobacco(Nicotiana tabacum L.). To investigate the inheritance and identification of stable quantitative trait loci(QTL) for BS response, F2,BC1 F2 individuals and BC1 F2:3 lines were produced from a cross between Beinhart 1000-1 and Xiaohuangjin 1025. Two major quantitative trait loci(M-QTL) named qBS7 and qBS17 were repeatedly detected under different conditions. QTL qBS7 was mapped to the region between PT30174 and PT60621 and explained 17.40%–25.60% of the phenotypic variance under different conditions. The other QTL qBS17 in interval PT61564–PT61538 of linkage group 17 was detected in a BC1 F2 population in the field and in BC1 F2:3 in both the field and at the seedling stage, explaining 6.90% to 11.60% of the phenotypic variance. The results improve our understanding of the inheritance of resistance to BS and provide information that can be used in marker-assisted breeding.
基金the Major Research of the National Natural Science Foundation of China(No.90715035)HI-Tech Research and Development Program of China(Code 2007AA11Z132).
文摘This paper builds the formulations of hyperplastic damage theory for rate-independent geomaterials to describe the bulk and the likely damage behavior of granular materials. Using 2 kinematic internal variables and the conjugates, dissipative and yield function can be reasonably introduced. A systematic constitutive presentation of 32 possible ways within the thermodynamical damage framework is presented, which entirely formulates the constitutive behavior through two scalar thermodynamic potentials. Combining the four common thermodynamical energy functions, two independent kinematic internal variables and the accordingly generalized stress are introduced to describe the damage behavior and structural rearrangement of the granules for any bulk deformation. A few Legendre transformations are used to establish the links between energy functions so that the complex incremental response of geomaterials can be entirely established from these four energy functions. The constitutive relations are built with the thermodynamics laws, which account for the important structural aspects of geomaterials. Some examples axe provided in the appendix to validate the applicability and implementation of the framework. This theory is based on previous work by Houlsby et al., and extends to the multi-mechanisms description. This framework paves a way in developing models for specific geomaterials with an examinable basis.
基金the Major Research of the National Natural Science Foundation of China(No.90715035)HI-Tech Research and Development Program of China(Code 2007AA11Z132).
文摘Naturally deposited or residual soils exhibit more complicated behavior than remolded clays. A dual-surface damage model for structured soils is developed based on the thermodynamics framework established in our first paper. The shift stresses and the transformation between the generalized dissipative stress space and actual stress space are established following a systematic procedure. The corresponding constitutive behavior of the proposed model is determined, which reflects the internal structural configuration and damage behavior for geomaterials. Four evolution variables κj^i(i=D, R;j=V, S) and the basic parameters λ, s, v and e0 are introduced to account for the progressive loss of internal structure for natural clays. A series of fully triaxial tests and isotropic compression tests are performed for structured and reconstituted samples of Beijing and Zhengzhou natural clays. The validation of the proposed model is examined by comparing the numerical results with the experimental data.
基金supported by National Natural Science Foundation of China (Nos.40404011 and 40774051)National Probing Project (SinoProbe-02)the Basic outlay of scientific research work from the Ministry of Science and Technology of the People’s Republic of China in 2007, 2008, 2009
文摘The Himalayan-Tibetan orogen is the youngest and arguably most spectacular of all the continent-continent collisional belts on the Earth. There are not only north-south extrusions but also east-west extensions in the Tibetan Plateau. All these phenomena are the results of the Indian plate subducting into the Eurasia plate about 70 Ma ago (Yin and Harrison, 2000), but the deep dynamics mechanism is still an enigma. Exploring the crust and upper mantle structure of Tibetan plateau and revealing the process and the effect of collision are crucial for solving the puzzle of the Tibet uplift and the continent-continent collision. This research is based on the data from the 360km-long Dagze-Deqen-Domar profile, which can be divided into two sections. The Dagze-Deqen section traverses the Nyainqntanglha Mountains and the Yadong-Gulu rift, the biggest rift in the Tibet. The Deqen-Domar section crosses Lhasa terrane and Qiangtang terrane. We study the transverse density structure of the crust and mantle beneath the Dagze-Deqen-Domar profile using a joint gravity-seismic inversion technique in order to obtain the Moho and the asthenospheric configuration beneath the profile and understand the deep dynamics mechanism of the Yadong-Gulu rift.
基金Supported by the National Natural Science Foundation of China under Grant No 11774438the Natural Science Foundation of Jiangsu Province under Grant No BK20151172+2 种基金the Qing Lan Project,the Opening Project of State Key Laboratory of Silicon Materials under Grant No SKL2017-04the Opening Project of Key Laboratory of Microelectronic Devices and Integrated Technology of Chinese Academy of Sciencesthe Postgraduate Research and Practice Innovation Program of Jiangsu Province under Grant No SJCX18_1024
文摘The Sb6 Te4/VO2 multilayer thin films are prepared by magnetron sputtering and the potential application in phase change memory is investigated in detail. Compared with Sb6 Te4, Sb6 Te4/VO2 multilayer composite thin films have higher phase change temperature and crystallization resistance, indicating better thermal stability and less power consumption. Also, Sb6 Te4/VO2 has a broader energy band of 1.58 eV and better data retention (125℃ for 103/). The crystallization is suppressed by the multilayer interfaces in Sbf Te4/VO2 thin film with a smaller rms surface roughness for Sbf Te4/VO2 than monolayer Sb4Te6. The picosecond laser technology is applied to study the phase change speed. A short crystallization time of 5.21 ns is realized for the Sb6Te4 (2nm)/VO2 (8nm) thin film. The Sb6 Te4/VO2 multilayer thin film is a potential and competitive phase change material for its good thermal stability and fast phase change speed.
文摘In order to obtain information on the biodegradation potential of biofilms involved in the removal of natural estrogens by biological activated carbon (BAC) columns, batch degradation of estrone (E1) and 17β-estradiol (E2) at temperature of 5℃, 20℃ and 35℃ by biofilms from four BAC columns (packed with activated carbon of particle size ranging from 0.5 - 0.59 mm and 1.0 - 1.19 mm into two bed depths) was studied. The results indicated that E2 was degraded faster by than E1 at all three temperatures and with the increasing of temperature, the amount of E1 converted from E2 increased. By fitting observed concentration data with a first-order rate expression, the bio-mass based degradation rate constants (kVSS) for E1 and E2 under all experimental conditions were estimated and linear relationship between lnkVSS and 1/T (T = absolute temperature) was demonstrated, resulting that with the increasing of the experimental temperature, degradation rate of biofilms for both E1 and E2 increased, and the increasing rate for E2 was higher than that for E1.
基金Supported by Key Scientific and Technological Project of Guangxi Province(GKG 1123007-3)Special Fund for Agro-scientific Research in the Public Interest(201103008,2008030152GX)+2 种基金Scientific Research Project of Fishery,Animal Husbandry and Veterinary Bureau of Guangxi Zhuang Autonomous Region(GYM[08]283219)Natural Science Foundation of Guangxi Zhuang Autonomous Region(2011GXNSFB018032)Systematic Research Project of Guangxi Key Laboratory of Animal Vaccines and New Technology(12-071-28-A-5)
文摘[ Objective] This study aimed to establish a rapid, sensitive and specific method using reverse transcription loop-mediated isothermal amplification (RT-LAMP) technology to detect swine Japanese B encephalitis virus (JEV). [ Method ] Four specific LAMP primers were designed according to six loci the conservative region of JEV E gene sequence. Positive JEV RNA sample was used as a template for one-step amplification, and the reaction conditions and reaction system were optimized. [ Result] Experimental results showed that the established method had high sensitivity, with the detection limit of 0.5pg; specificity experi- ments indicated that the method had high specificity and there was no amplification reaction for other viral pathogens. The coincidence rate between detection results of RT-LAMP and RT-Nested-PCR was 90.9%. After RT-LAMP reaction, a chemiluminescent agent was added for visual observation, which greatly reduced the detection time. This method required no special equipment but only a water bath, which was a simple, sensitive and rapid detection method for swine Japanese B encephalitis virus and could be applied in primary laboratories. [ Conclusion] An RT-LAMP detection method for swine Japanese B encephalitis virus was successfully established and preliminarily applied in clinical practice.
基金supported by the National Key R&D Program of China(Grant No.2018YFA0702700)the National Natural Science Foundation of China(Grant Nos.42330301,42488101)the Fundamental Research Funds for the Central Universities of China(Grant No.WK3410000019)。
文摘In this work,we provide a comprehensive review on the formation,evolution,properties,and effects of supercritical geofluid.In Earth's interior,enhanced miscibility between H_(2)O and silicate by the addition of special components or by the increase of pressure and temperature gives rise to supercritical geofluid with a significant amount of both H_(2)O and silicate solute.The formation of supercritical geofluid in magmatic-hydrothermal systems,typified by pegmatite system,is governed by meltfluid critical curve.The formation of supercritical geofluid in metamorphic systems,typified by subducted slab,is governed by the second critical end point.Experimental results suggest that the presence of boron and fluorine in pegmatite system makes it possible to form supercritical geofluid at crustal depths,but the release of supercritical geofluid from subducted slab is withheld until almost 100 km depth.A major presence of both H_(2)O and depolymerized structural units(monomers,dimers,etc.)endows supercritical geofluid with unique physical properties including low density,low elastic moduli,low viscosity,high diffusivity,and high electrical conductivity.Supercritical geofluid can effectively mobilize a variety of elements even including high field strength elements and heavy rare earth elements.The chemical signatures of supercritical geofluid can be inherited by metasomatized mantle and mantle-derived melts,and this could give an explanation of the oxidation of arc magmas.Phase separation of supercritical geofluid through the mechanism of spinodal decomposition leads to formation of a melt network.Multiphase fluid inclusions recovered from subduction zone rocks and pegmatites are possible relics of supercritical geofluid.Supercritical geofluid can cause electrical anomaly and low seismic velocity near the top of subducted slab,and can be linked with intermediate-focus earthquakes.Supercritical geofluid may have played a crucial role in the formation of pegmatites and associated ore deposits.
基金This work was supported by the National Key R&D Program of China(Grant No.2021YFC2103705).
文摘The characterization of bio-aviation fuel composition is paramount for assessing biomass conversion processes and its suitability to meet international standards.Compared with one-dimensional gas chromatography mass spectrometry(1DGC-MS),comprehensive two-dimensional gas chromatography with mass spectrometry(GC×GC-MS)emerges as a promising analytical approach for bio-aviation fuel,offering enhanced separation,resolution,selectivity,and sensitivity.This study addresses the qualitative and quantitative analysis methods for both bulk components and trace fatty acid methyl ester(FAME)in bio-aviation fuel obtained by hydrogenation at 400℃ with Ni-Mo/γ-Al_(2)O_(3)&Meso-SAPO-11 as catalyst using GC×GC-MS.In bulk composition analysis,C1_(2) concentration was highest at 25.597%.Based on GC×GC-MS analysis platform,the quality control method of FAME in bio-aviation fuel was established.At the split ratio of 10:1,limits of detections of six FAMEs were 0.011–0.027 mg·kg^(–1),and limits of quantifications were 0.036–0.090 mg·kg^(–1),and the GC×GC-MS research platform had the ability to detect FAME from 2 to 5 mg·kg^(–1).The results showed that this bio-aviation fuel did not contain FAME.