Asgard is an archaeal superphylum that might hold the key to understand the origin of eukaryotes, but its diversity and ecological roles remain poorly understood. Here, we reconstructed 15 metagenomic-assembled genome...Asgard is an archaeal superphylum that might hold the key to understand the origin of eukaryotes, but its diversity and ecological roles remain poorly understood. Here, we reconstructed 15 metagenomic-assembled genomes from coastal sediments covering most known Asgard archaea and a novel group, which is proposed as a new Asgard phylum named as the "Gerdarchaeota".Genomic analyses predict that Gerdarchaeota are facultative anaerobes in utilizing both organic and inorganic carbon. Unlike their closest relatives Heimdallarchaeota, Gerdarchaeota have genes encoding for cellulase and enzymes involved in the tetrahydromethanopterin-based Wood–Ljungdahl pathway. Transcriptomics showed that most of our identified Asgard archaea are capable of degrading organic matter, including peptides, amino acids and fatty acids, occupying ecological niches in different depths of layers of the sediments. Overall, this study broadens the diversity of the mysterious Asgard archaea and provides evidence for their ecological roles in coastal sediments.展开更多
基金the National Natural Science Foundation of China (91851105, 31622002, 31970105, 31600093, and 31700430)the Shenzhen Science and Technology Program (JCYJ20170818091727570 and KQTD20180412181334790)+3 种基金the Key Project of Department of Education of Guangdong Province (2017KZDXM071)the China Postdoctoral Science Foundation (2018M633111)the DFG (Deutsche Forschungsgemeinschaft) Cluster of Excellence EXC 309 “The Ocean in the Earth System - MARUM - Center for Marine Environmental Sciences” (project ID 49926684)the University of Bremen。
文摘Asgard is an archaeal superphylum that might hold the key to understand the origin of eukaryotes, but its diversity and ecological roles remain poorly understood. Here, we reconstructed 15 metagenomic-assembled genomes from coastal sediments covering most known Asgard archaea and a novel group, which is proposed as a new Asgard phylum named as the "Gerdarchaeota".Genomic analyses predict that Gerdarchaeota are facultative anaerobes in utilizing both organic and inorganic carbon. Unlike their closest relatives Heimdallarchaeota, Gerdarchaeota have genes encoding for cellulase and enzymes involved in the tetrahydromethanopterin-based Wood–Ljungdahl pathway. Transcriptomics showed that most of our identified Asgard archaea are capable of degrading organic matter, including peptides, amino acids and fatty acids, occupying ecological niches in different depths of layers of the sediments. Overall, this study broadens the diversity of the mysterious Asgard archaea and provides evidence for their ecological roles in coastal sediments.