This study investigated the effects of superheated steam(SS)treatment at different temperatures(120℃,150℃,180℃)on the physicochemical properties of broken rice flour and the quality of broken rice cakes.SS treatmen...This study investigated the effects of superheated steam(SS)treatment at different temperatures(120℃,150℃,180℃)on the physicochemical properties of broken rice flour and the quality of broken rice cakes.SS treatment at 120℃ significantly enhanced the moisture content of broken rice flour(P<0.05).In contrast,treatments at 150℃ and 180℃ caused decrease of moisture content,amylose leaching,and reduction of damaged starch content.After SS treatment,the pasting properties of broken rice flour increased,along with the rising of storage modulus and loss modulus.The proportion of short chains(DP 6-12)in amylopectin increased from 29.42%to 34.80%(P<0.05),which could delay starch retrogradation.Compared with untreated ones,the SS-150 broken rice cakes showed a significantly higher specific volume(2.96 mL/g,P<0.05),more uniform cell structure,and lower hardness(1.66 N)and chewiness(10.22 mJ).After 7 days of storage,cakes from SS-treated rice flour(150℃ and 180℃)had significantly reduced hardness and chewiness.The study demonstrated that SS treatment could improve the properties of broken rice flour and enhance the quality of broken rice cakes,especially at 150℃ and 180℃.This study presents a method for improving the quality of broken rice flour and rice cakes using superheated steam treatment,addressing challenges related to poor flour characteristics and suboptimal cake quality.The findings offer technical and theoretical support for enhancing rice cake production,contributing to the comprehensive utilization of rice resources.展开更多
An air superoleophobic/superhydrophilic composite coating with a unique structure was fabricated by oxidation and further modification of the copper mesh,and its design principle was clarified.This unique bird-nest-li...An air superoleophobic/superhydrophilic composite coating with a unique structure was fabricated by oxidation and further modification of the copper mesh,and its design principle was clarified.This unique bird-nest-like configuration gives it instant superhydrophilicity due to the high surface roughness and high polar surface free energy components,while air superoleophobicity is caused by its extremely low dispersive surface free energy components.Furthermore,a water-resistance mechanism was proposed whereby a polyelectrolyte plays a critical role in improving the water-resistance of fluorosurfactants.It can separate oil–water mixtures with high efficiency(98.72%)and high flux(25185 L·m−2·h−1),and can be reused.In addition,our composite coating had certain anti-acid,anti-alkali,anti-salt and anti-sand impact performance.More importantly,after being soaked in water for a long time or being exposed to the air for a long time,it still retained ultra-high air oil contact angle and showed excellent stability,which provided the possibility for practical applications.Thus,these findings offer the potential for significant practical applications in managing oily wastewater and marine oil spill incidents.展开更多
基金supported by the Postdoctoral Innovation Project of Shandong Province (SDCX-ZG-202303090).
文摘This study investigated the effects of superheated steam(SS)treatment at different temperatures(120℃,150℃,180℃)on the physicochemical properties of broken rice flour and the quality of broken rice cakes.SS treatment at 120℃ significantly enhanced the moisture content of broken rice flour(P<0.05).In contrast,treatments at 150℃ and 180℃ caused decrease of moisture content,amylose leaching,and reduction of damaged starch content.After SS treatment,the pasting properties of broken rice flour increased,along with the rising of storage modulus and loss modulus.The proportion of short chains(DP 6-12)in amylopectin increased from 29.42%to 34.80%(P<0.05),which could delay starch retrogradation.Compared with untreated ones,the SS-150 broken rice cakes showed a significantly higher specific volume(2.96 mL/g,P<0.05),more uniform cell structure,and lower hardness(1.66 N)and chewiness(10.22 mJ).After 7 days of storage,cakes from SS-treated rice flour(150℃ and 180℃)had significantly reduced hardness and chewiness.The study demonstrated that SS treatment could improve the properties of broken rice flour and enhance the quality of broken rice cakes,especially at 150℃ and 180℃.This study presents a method for improving the quality of broken rice flour and rice cakes using superheated steam treatment,addressing challenges related to poor flour characteristics and suboptimal cake quality.The findings offer technical and theoretical support for enhancing rice cake production,contributing to the comprehensive utilization of rice resources.
基金supported by the Science and Technology Department of Sichuan Province(2021YFG0275).
文摘An air superoleophobic/superhydrophilic composite coating with a unique structure was fabricated by oxidation and further modification of the copper mesh,and its design principle was clarified.This unique bird-nest-like configuration gives it instant superhydrophilicity due to the high surface roughness and high polar surface free energy components,while air superoleophobicity is caused by its extremely low dispersive surface free energy components.Furthermore,a water-resistance mechanism was proposed whereby a polyelectrolyte plays a critical role in improving the water-resistance of fluorosurfactants.It can separate oil–water mixtures with high efficiency(98.72%)and high flux(25185 L·m−2·h−1),and can be reused.In addition,our composite coating had certain anti-acid,anti-alkali,anti-salt and anti-sand impact performance.More importantly,after being soaked in water for a long time or being exposed to the air for a long time,it still retained ultra-high air oil contact angle and showed excellent stability,which provided the possibility for practical applications.Thus,these findings offer the potential for significant practical applications in managing oily wastewater and marine oil spill incidents.