The pear(Pyrus spp.)is well known for diverse flavors,textures,and global horticultural importance.However,the genetic diversity responsible for its extensive phenotypic variations remains largely unexplored.Here,we d...The pear(Pyrus spp.)is well known for diverse flavors,textures,and global horticultural importance.However,the genetic diversity responsible for its extensive phenotypic variations remains largely unexplored.Here,we de novo assembled and annotated the genomes of the maternal(PsbM)and paternal(PsbF)lines of the hybrid‘Yuluxiang'pear and constructed the pear pangenome of 1.15 Gb by combining these two genomes with five previously published pear genomes representing cultivated and wild germplasm.Using the constructed pangenome,we identified 21224 gene PAVs(Presence-absence variation)and 1158812 SNPs(Single Nucleotide Polymorphism)in the non-reference genome that were absent in the PsbM reference genome.Compared with SNP markers,PAV-based analysis provides additional insights into the pear population structure.In addition,some genes associated with pear fruit quality traits have differential occurrence frequencies and differential gene expression between Asian and European populations.Moreover,our analysis of the pear pangenome revealed a mutated SNP and an insertion in the promoter region of the gene PsbMGH3.1 potentially enhance sepal shedding in‘Xuehuali'which is vital for pear quality.PsbMGH3.1 may play a role in the IAA pathway,contributing to a distinct low-auxin phenotype observed in plants by heterologously overexpressing this gene.This research helps capture the genetic diversity of pear populations and provides genomic resources for accelerating breeding.展开更多
The Ordos Basin is a large cratonic basin with stable deposition in Northwest China.Given its mostly stable subsidence background and the urgent need for saline water disposal and carbon dioxide storage in the coal mi...The Ordos Basin is a large cratonic basin with stable deposition in Northwest China.Given its mostly stable subsidence background and the urgent need for saline water disposal and carbon dioxide storage in the coal mining and coal chemical industries,the Ordos Basin has been chosen as a pilot demonstration site for carbon dioxide and saline water storage in China.However,few studies have been made to evaluate the sedimentary and sequence stratigraphy characteristics of this region,as well as their influence on carbon dioxide and saline water storage potential.To address this research gap,we conducted a sedimentary study of the Lower Triassic Liujiagou Formation in the northeastern Ordos Basin utilizing the stratigraphy theory,laboratory test analysis,and pilot project demonstration,to evaluate the area's viability for the deep geological storage of gas and liquid waste.We studied the tectonic setting,petrological features,and sedimentary characteristics of the favorable strata and predicted favorable areas based on sequence stratigraphy theory.The lithology predominantly consists of feldspathic graywacke,with a fine grain size and mostly fine-to-medium-grained sandstone.The distribution of thick-grained sandstone and fine-grained sediment was identified by dividing the sequence,and a favorable reservoir-cap assemblage configuration was formed.It's concluded that the Lower Triassic Liujiagou Formation exhibits suitable characteristics for the deep geological storage of carbon dioxide and saline water.This study demonstrates the importance of basic theory in guiding practical applications and provides a reference for the scientific selection of favorable areas for deep basin storage.展开更多
The extract of crofton weed(Eupatorium adenophorum) inhibits seed germination and weed growth;however,the physiological mechanisms underlying the effect of crofton weed extract on the modulation of seedling growth and...The extract of crofton weed(Eupatorium adenophorum) inhibits seed germination and weed growth;however,the physiological mechanisms underlying the effect of crofton weed extract on the modulation of seedling growth and root system development remain largely unclear.In this study,we investigated the effects of the leaf extract of crofton weed(LECW) on primary root(PR) growth in maize seedlings.Treatment with LECW markedly inhibited seed germination and seedling growth in a dose-dependent manner.Physiological analysis indicated that the LECW induced reactive oxygen species(ROS) accumulation in root tips,thereby leading to cell swelling and deformation both in the root cap and elongation zone of root tips,finally leading to cell death in root border cells(RBCs) and PR growth inhibition.The LECW also inhibited pectin methyl esterase(PME) activity,thereby decreasing the RBC number.Taken together,our results indicated that the LECW inhibited PR growth by inducing ROS accumulation and subsequent cell death in RBCs.The present study provides a better understanding of how the LECW modifies root system development and provides insight for evaluating the toxicity of crofton weed extracts in plants.展开更多
Intangible cultural heritage is the crystallization of people's experience and wisdom.It is an oral or intangible heritage that has been passed down from ancient times to the present and has been constantly optimi...Intangible cultural heritage is the crystallization of people's experience and wisdom.It is an oral or intangible heritage that has been passed down from ancient times to the present and has been constantly optimized and improved.It plays an important role in enhancing cultural diversity and human creativity.The intangible cultural heritage of ethnic minorities in China is a unique national treasure with rich connotations and diverse manifestations.It is the precious spiritual wealth of the Chinese nation and greatly promotes the cultural diversity of our country.As a manifestation of intangible cultural heritage of ethnic minorities,Mongolian medicine plays an important role in the development history of ethnic minorities and promotes cultural diversity in China in many ways.展开更多
The global antibiotic resistance crisis necessitates urgent solutions.One innovative approach involves potentiating antibiotics and non-antibiotic drugs with adjuvants or boosters.A major drawback of these membrane-ac...The global antibiotic resistance crisis necessitates urgent solutions.One innovative approach involves potentiating antibiotics and non-antibiotic drugs with adjuvants or boosters.A major drawback of these membrane-active boosters is their limited biocompatibility,as they struggle to differentiate between prokaryotic and eukaryotic membranes.This study reports the chemical biology investigation of a dual-action oligoamidine(OA1)booster with a glutathione-triggered decomposition mechanism.OA1,when combined with other antimicrobial molecules,exhibits a triple-targeting mechanism including cell membrane disruption,DNA targeting,and intracellular enzyme inhibition.This multi-targeting mechanism not only enhances the in vitro and in vivo eradication of antibiotic-resistant“ESKAPE”pathogens,but also suppresses the development of bacterial resistance.Furthermore,OA1 maintains its activity in bacterial cells by creating an oxidative environment,while it quickly decomposes in mammalian cells due to high glutathione levels.These mechanistic insights and design principles may provide a feasible approach to develop novel antimicrobial agents and effective anti-resistance combination therapies.展开更多
Antimony sulfide(Sb_(2)S_(3))solar cells fabricated via hydrothermal deposition have attracted widespread attention.The annealing crystallization process plays a crucial role in achieving optimal crystallinity in hydr...Antimony sulfide(Sb_(2)S_(3))solar cells fabricated via hydrothermal deposition have attracted widespread attention.The annealing crystallization process plays a crucial role in achieving optimal crystallinity in hydrothermal Sb_(2)S_(3)thin films.Nevertheless,incomplete crystallization and the loss of sulfur at high-temperature contribute to defect recombination,constraining device performance.Herein,a twostep rapid thermal processing(RTP)annealing strategy is proposed to improve the crystal quality and efficiency of Sb_(2)S_(3)solar cells.The annealing process in Ar protection with atmospheric pressure can suppress S loss caused by saturated vapor pressure.The two-step RTP annealing with the 330℃ low-temperature and 370℃ high-temperature process ensures high crystallinity and vertical orientations of Sb_(2)S_(3)thin films,accompanied by a reduction in defect concentration from 1.01×10^(12)to 5.97×10^(11)cm^(-3).The Sb_(2)S_(3)solar cell achieves an efficiency of 8.20%with an enhanced open circuit voltage(VOC)of 784 mV.The build-in voltage(Vbi)of 1.17 V and irradiation-dependent ideal factor(n)of 1.48 demonstrate enhanced heterojunction quality and suppressed defect recombination in the devices.The presented two-step annealing strategy and physical mechanism study will open new prospects for high-performance Sb_(2)S_(3)solar cells.展开更多
The research on the application of X-ray diffraction in the quantitative analysis of Chinese medicines is rare. The main reason is that the technical problems related to the internal standard and the selection of quan...The research on the application of X-ray diffraction in the quantitative analysis of Chinese medicines is rare. The main reason is that the technical problems related to the internal standard and the selection of quantitative peaks are not well solved, and the accuracy and precision of the results are not satisfactory. This study employed the concept of mass absorption coefficient based on the internal standard method, and the full spectrum fitting and quantitative methods were used to solve the above technical problems. The sample was blended. the internal standard substance of zinc oxide was fully ground, and tablets were prepared by positive pressure method. Under certain instrumental conditions, the PXRD pattern was obtained by scanning. The percentage of gypsum fibrosum in Xiaokening tablet was obtained by quantitative analysis of full spectrum fitting internal standard by TOPAS software. The method was investigated by methodology. At the same time, the method was compared by ion chromatography, and SPSS software was used to make a significant t test on the results of the two methods. After the investigation, the average standard recovery rate of CaSO4-2H2O was 99.06%(RSD = 3.02%);and the recovery rate for simulated samples was 96.7%. The method had good specificity. After statistical analysis, there was no significant difference between the new PXRD method and the traditional method of ion chromatography.展开更多
As one of the most common social relationships among college students,the dormitory interpersonal relationship has important effects on students'psychology and behavior.For quantitative analysis of the dormitory i...As one of the most common social relationships among college students,the dormitory interpersonal relationship has important effects on students'psychology and behavior.For quantitative analysis of the dormitory interpersonal influence on college students'emergency evacuation behavior,an evacuation simulation experiment of college students carried out and coupling questionnaire survey,measurement and social force model of society to visualize the normal dormitory interpersonal relationship and emergency evacuation following relationship of college students,then simulation experiment is used to explore the impact of different types of dormitory relationship structure on emergency evacuation.The results show that dormitory interpersonal relationship is an important component of college students'interpersonal network and has an important impact on emergency evacuation behavior.The close and united dormitory relationship has a good promotion effect on the emergency evacuation efficiency.When the emergency occurs,the dormitory interpersonal relationship of college students will partly transform into the leader-following behavior relationship,and the evacuation efficiency will decrease.The influence of dormitory interpersonal relationship on evacuation behavior is related to gender and grade which is higher for female students than male students,and is higher for junior students than senior students.展开更多
We made oligoamidine-based peptidomimetics highly specific for mycobacteria eradication by introducing and arraying lipophilic DNA binding motifs on macromolecular backbones.The short poly(amidino-phenylindole)(PAPI)s...We made oligoamidine-based peptidomimetics highly specific for mycobacteria eradication by introducing and arraying lipophilic DNA binding motifs on macromolecular backbones.The short poly(amidino-phenylindole)(PAPI)structures feature an alternating amphiphilic structure with cationic,lipophilic DNA-binding moieties,enabling fast and selective eradication of mycobacteria through binary,membrane-and DNA-selective mechanisms of action.More importantly,PAPIs address the primary treatment challenge by combating mycobacteria in eukaryotic cells and working as a sensitizer for conventional antibiotics,in bothways promoting more thorough removal of pathogens and reducing the mycobacteria’s resistance generation rate during treatment.Structural optimizationwas achieved to counter specific pathogens,including Mycobacterium tuberculosis,in the Mycobacterium genus.One of the hit peptidomimetics was evaluated in a zebrafish-based aquatic infection model using Mycobacterium fortuitum and a mice tail infection model using Mycobacterium marinum,both revealing excellent in vivo performance.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.32102364)the General Program of Shandong Natural Science Foundation(Grant No.ZR2022MC064)+3 种基金the Shanxi Province Postdoctoral Research Activity Fund(Grant No.K462101001)the Doctoral Research Initiation Fund of Shanxi Datong University(Grant No.2023-B-15)the Earmarked Fund for Modern Agro-industry Technology Research System(Grant No.2023CYJSTX07)the Shanxi Province Excellent Doctoral Work Award Project(Grant No.606-02010609)。
文摘The pear(Pyrus spp.)is well known for diverse flavors,textures,and global horticultural importance.However,the genetic diversity responsible for its extensive phenotypic variations remains largely unexplored.Here,we de novo assembled and annotated the genomes of the maternal(PsbM)and paternal(PsbF)lines of the hybrid‘Yuluxiang'pear and constructed the pear pangenome of 1.15 Gb by combining these two genomes with five previously published pear genomes representing cultivated and wild germplasm.Using the constructed pangenome,we identified 21224 gene PAVs(Presence-absence variation)and 1158812 SNPs(Single Nucleotide Polymorphism)in the non-reference genome that were absent in the PsbM reference genome.Compared with SNP markers,PAV-based analysis provides additional insights into the pear population structure.In addition,some genes associated with pear fruit quality traits have differential occurrence frequencies and differential gene expression between Asian and European populations.Moreover,our analysis of the pear pangenome revealed a mutated SNP and an insertion in the promoter region of the gene PsbMGH3.1 potentially enhance sepal shedding in‘Xuehuali'which is vital for pear quality.PsbMGH3.1 may play a role in the IAA pathway,contributing to a distinct low-auxin phenotype observed in plants by heterologously overexpressing this gene.This research helps capture the genetic diversity of pear populations and provides genomic resources for accelerating breeding.
基金funded by the Science and Technology Innovation Project of China National Administration of Coal Geology(ZMKJ-2021-ZX02)the National Key Research and Development Program of China(2023YFC3012104)Key Development Program of Shaanxi Province(2024SF-YBXM-603).
文摘The Ordos Basin is a large cratonic basin with stable deposition in Northwest China.Given its mostly stable subsidence background and the urgent need for saline water disposal and carbon dioxide storage in the coal mining and coal chemical industries,the Ordos Basin has been chosen as a pilot demonstration site for carbon dioxide and saline water storage in China.However,few studies have been made to evaluate the sedimentary and sequence stratigraphy characteristics of this region,as well as their influence on carbon dioxide and saline water storage potential.To address this research gap,we conducted a sedimentary study of the Lower Triassic Liujiagou Formation in the northeastern Ordos Basin utilizing the stratigraphy theory,laboratory test analysis,and pilot project demonstration,to evaluate the area's viability for the deep geological storage of gas and liquid waste.We studied the tectonic setting,petrological features,and sedimentary characteristics of the favorable strata and predicted favorable areas based on sequence stratigraphy theory.The lithology predominantly consists of feldspathic graywacke,with a fine grain size and mostly fine-to-medium-grained sandstone.The distribution of thick-grained sandstone and fine-grained sediment was identified by dividing the sequence,and a favorable reservoir-cap assemblage configuration was formed.It's concluded that the Lower Triassic Liujiagou Formation exhibits suitable characteristics for the deep geological storage of carbon dioxide and saline water.This study demonstrates the importance of basic theory in guiding practical applications and provides a reference for the scientific selection of favorable areas for deep basin storage.
基金the Key Project of Science and Technology of Shanxi Province(20150311016-5)the Science and Technology innovation Foundation of Shanxi Agricultural University(2017ZZ09)。
文摘The extract of crofton weed(Eupatorium adenophorum) inhibits seed germination and weed growth;however,the physiological mechanisms underlying the effect of crofton weed extract on the modulation of seedling growth and root system development remain largely unclear.In this study,we investigated the effects of the leaf extract of crofton weed(LECW) on primary root(PR) growth in maize seedlings.Treatment with LECW markedly inhibited seed germination and seedling growth in a dose-dependent manner.Physiological analysis indicated that the LECW induced reactive oxygen species(ROS) accumulation in root tips,thereby leading to cell swelling and deformation both in the root cap and elongation zone of root tips,finally leading to cell death in root border cells(RBCs) and PR growth inhibition.The LECW also inhibited pectin methyl esterase(PME) activity,thereby decreasing the RBC number.Taken together,our results indicated that the LECW inhibited PR growth by inducing ROS accumulation and subsequent cell death in RBCs.The present study provides a better understanding of how the LECW modifies root system development and provides insight for evaluating the toxicity of crofton weed extracts in plants.
基金Supported by Inner Mongolia Social Science Fund Project(19B22)。
文摘Intangible cultural heritage is the crystallization of people's experience and wisdom.It is an oral or intangible heritage that has been passed down from ancient times to the present and has been constantly optimized and improved.It plays an important role in enhancing cultural diversity and human creativity.The intangible cultural heritage of ethnic minorities in China is a unique national treasure with rich connotations and diverse manifestations.It is the precious spiritual wealth of the Chinese nation and greatly promotes the cultural diversity of our country.As a manifestation of intangible cultural heritage of ethnic minorities,Mongolian medicine plays an important role in the development history of ethnic minorities and promotes cultural diversity in China in many ways.
基金supported by the National Key Research and Development Program of China(2023YFD1800100 to Feng X and Bai Y)the National Natural Science Foundation of China(22177031 to Feng X,92163127 to Bai Y,82102415 to Wan M,and 82304277 to Zhang C)+4 种基金the Natural Science Foundation of Hunan Province(2024JJ4007 and 2024RC3078 to Feng X,2022RC1107 and 2024JJ2010 to Bai Y)the Natural Science Foundation of Changsha(kq2208050 to Zhang C)the Health and Medical Research Fund(HMRF),Hong Kong SAR(22210412to Wong WL)the Independent Research Project of the College of Advanced Interdisciplinary Studies of NUDT(22-ZZKY-03 to Pu H)the Project of Hunan Provincial Key Laboratory of Anti-Resistance Microbial Drugs(2023TP1013)。
文摘The global antibiotic resistance crisis necessitates urgent solutions.One innovative approach involves potentiating antibiotics and non-antibiotic drugs with adjuvants or boosters.A major drawback of these membrane-active boosters is their limited biocompatibility,as they struggle to differentiate between prokaryotic and eukaryotic membranes.This study reports the chemical biology investigation of a dual-action oligoamidine(OA1)booster with a glutathione-triggered decomposition mechanism.OA1,when combined with other antimicrobial molecules,exhibits a triple-targeting mechanism including cell membrane disruption,DNA targeting,and intracellular enzyme inhibition.This multi-targeting mechanism not only enhances the in vitro and in vivo eradication of antibiotic-resistant“ESKAPE”pathogens,but also suppresses the development of bacterial resistance.Furthermore,OA1 maintains its activity in bacterial cells by creating an oxidative environment,while it quickly decomposes in mammalian cells due to high glutathione levels.These mechanistic insights and design principles may provide a feasible approach to develop novel antimicrobial agents and effective anti-resistance combination therapies.
基金supported by the National Natural Science Foundation of China(52372183,52002073,62305064)the Fujian Science&Technology Innovation Laboratory for Optoelectronic Information of China(2021ZZ124)the Foundation of Fujian Provincial Department of Industry and Information Technology of China(82318075)。
文摘Antimony sulfide(Sb_(2)S_(3))solar cells fabricated via hydrothermal deposition have attracted widespread attention.The annealing crystallization process plays a crucial role in achieving optimal crystallinity in hydrothermal Sb_(2)S_(3)thin films.Nevertheless,incomplete crystallization and the loss of sulfur at high-temperature contribute to defect recombination,constraining device performance.Herein,a twostep rapid thermal processing(RTP)annealing strategy is proposed to improve the crystal quality and efficiency of Sb_(2)S_(3)solar cells.The annealing process in Ar protection with atmospheric pressure can suppress S loss caused by saturated vapor pressure.The two-step RTP annealing with the 330℃ low-temperature and 370℃ high-temperature process ensures high crystallinity and vertical orientations of Sb_(2)S_(3)thin films,accompanied by a reduction in defect concentration from 1.01×10^(12)to 5.97×10^(11)cm^(-3).The Sb_(2)S_(3)solar cell achieves an efficiency of 8.20%with an enhanced open circuit voltage(VOC)of 784 mV.The build-in voltage(Vbi)of 1.17 V and irradiation-dependent ideal factor(n)of 1.48 demonstrate enhanced heterojunction quality and suppressed defect recombination in the devices.The presented two-step annealing strategy and physical mechanism study will open new prospects for high-performance Sb_(2)S_(3)solar cells.
文摘The research on the application of X-ray diffraction in the quantitative analysis of Chinese medicines is rare. The main reason is that the technical problems related to the internal standard and the selection of quantitative peaks are not well solved, and the accuracy and precision of the results are not satisfactory. This study employed the concept of mass absorption coefficient based on the internal standard method, and the full spectrum fitting and quantitative methods were used to solve the above technical problems. The sample was blended. the internal standard substance of zinc oxide was fully ground, and tablets were prepared by positive pressure method. Under certain instrumental conditions, the PXRD pattern was obtained by scanning. The percentage of gypsum fibrosum in Xiaokening tablet was obtained by quantitative analysis of full spectrum fitting internal standard by TOPAS software. The method was investigated by methodology. At the same time, the method was compared by ion chromatography, and SPSS software was used to make a significant t test on the results of the two methods. After the investigation, the average standard recovery rate of CaSO4-2H2O was 99.06%(RSD = 3.02%);and the recovery rate for simulated samples was 96.7%. The method had good specificity. After statistical analysis, there was no significant difference between the new PXRD method and the traditional method of ion chromatography.
基金Supported by Tianjin Social Science Project (TJGL21-019)。
文摘As one of the most common social relationships among college students,the dormitory interpersonal relationship has important effects on students'psychology and behavior.For quantitative analysis of the dormitory interpersonal influence on college students'emergency evacuation behavior,an evacuation simulation experiment of college students carried out and coupling questionnaire survey,measurement and social force model of society to visualize the normal dormitory interpersonal relationship and emergency evacuation following relationship of college students,then simulation experiment is used to explore the impact of different types of dormitory relationship structure on emergency evacuation.The results show that dormitory interpersonal relationship is an important component of college students'interpersonal network and has an important impact on emergency evacuation behavior.The close and united dormitory relationship has a good promotion effect on the emergency evacuation efficiency.When the emergency occurs,the dormitory interpersonal relationship of college students will partly transform into the leader-following behavior relationship,and the evacuation efficiency will decrease.The influence of dormitory interpersonal relationship on evacuation behavior is related to gender and grade which is higher for female students than male students,and is higher for junior students than senior students.
基金This research was made possible as a result of the start-up funding from Hunan University,as a part of China’s Fundamental Research Funds for the Central Universities,the funding from the National Natural Science Foundation of China(grant nos.21877033,92163127,Y.B.,21807031,22177031,X.F.)the funding from the Natural Science Foundation of Hunan Province(grant no.2021JJ30088,Y.B.,2020JJ4177,X.F.)the Open Funding Project of the State Key Laboratory of Biocatalysis and Enzyme Engineering(Hubei University,SKLBEE2019003,X.F.).
文摘We made oligoamidine-based peptidomimetics highly specific for mycobacteria eradication by introducing and arraying lipophilic DNA binding motifs on macromolecular backbones.The short poly(amidino-phenylindole)(PAPI)structures feature an alternating amphiphilic structure with cationic,lipophilic DNA-binding moieties,enabling fast and selective eradication of mycobacteria through binary,membrane-and DNA-selective mechanisms of action.More importantly,PAPIs address the primary treatment challenge by combating mycobacteria in eukaryotic cells and working as a sensitizer for conventional antibiotics,in bothways promoting more thorough removal of pathogens and reducing the mycobacteria’s resistance generation rate during treatment.Structural optimizationwas achieved to counter specific pathogens,including Mycobacterium tuberculosis,in the Mycobacterium genus.One of the hit peptidomimetics was evaluated in a zebrafish-based aquatic infection model using Mycobacterium fortuitum and a mice tail infection model using Mycobacterium marinum,both revealing excellent in vivo performance.