期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Room Temperature Synthesis of Vertically Aligned Amorphous Ultrathin NiCo-LDH Nanosheets Bifunctional Flexible Supercapacitor Electrodes 被引量:1
1
作者 Kwadwo Asare Owusu Zhaoyang Wang +7 位作者 Ali Saad Felix Ofori Boakye Muhammad Asim Mushtaq Muhammad Tahir Ghulam Yasin Dongqing Liu Zhengchun Peng xingke cai 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第2期277-286,共10页
Developing a simple scalable method to fabricate electrodes with high capacity and wide voltage range is desired for the real use of electrochemical supercapacitors.Herein,we synthesized amorphous NiCo-LDH nanosheets ... Developing a simple scalable method to fabricate electrodes with high capacity and wide voltage range is desired for the real use of electrochemical supercapacitors.Herein,we synthesized amorphous NiCo-LDH nanosheets vertically aligned on activated carbon cloth substrate,which was in situ transformed from Co-metal-organic framework materials nano-columns by a simple ion exchange process at room temperature.Due to the amorphous and vertically aligned ultrathin structure of NiCo-LDH,the NiCo-LDH/activated carbon cloth composites present high areal capacities of 3770 and 1480 mF cm^(-2)as cathode and anode at 2 mA cm^(-2),and 79.5%and 80%capacity have been preserved at 50 mA cm^(-2).In the meantime,they all showed excellent cycling performance with negligible change after>10000 cycles.By fabricating them into an asymmetric supercapacitor,the device achieves high energy densities(5.61 mWh cm^(-2)and 0.352 mW cm^(-3)).This work provides an innovative strategy for simplifying the design of supercapacitors as well as providing a new understanding of improving the rate capabilities/cycling stability of NiCo-LDH materials. 展开更多
关键词 amorphous nanosheets aqueous supercapacitor high volumetric/areal energy density NiCo-LDH room temperature synthesis
在线阅读 下载PDF
Ionic potency regulation of coagulation bath induced by saline solution to control over the pore structure of PBI membrane for highperformance lithium metal batteries
2
作者 Arshad Hussain Waseem Raza +6 位作者 Andleeb Mehmood Sana Jalees Lihong Ao Yonggui Deng Aymeric Ramiere xingke cai Dongqing Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期288-298,共11页
In this study,we have explored the use of water as a non-solvent for tuning the microstructure of poly-benzimidazole(PBI)membranes,which are potential separators for lithium metal batteries(LMBs).The traditional metho... In this study,we have explored the use of water as a non-solvent for tuning the microstructure of poly-benzimidazole(PBI)membranes,which are potential separators for lithium metal batteries(LMBs).The traditional method for membrane synthesis called nonsolvent-induced phase separation(NIPS),usually relies on hazardous and costly organic non-solvents.By dissolving sodium chloride(Nacl)in water,we could adjust the water ionic potency and the exchange speed of the non-solvent with the DMAC solution to change the micropore structure of the PBI membrane.With increasing Nacl concentration,the micro-pores in the PBI membrane transitioned from finger-like to sponge-like morphology.Compared to com-mercial separators like the Celgard separator,the PBI membrane with sponge-like micropores exhibited better regulation of lithium deposition and improved Li^(+) transportation capability due to its good wetta-bility with the electrolyte.Consequently,the PBI membrane-based Li/Li symmetric cell and Li/LiFePO_(4) full cell demonstrated superior performance compared to the Celgard-based ones.This research proposes an eco-friendly and scalable synthetic approach for fabricating commercial separators for LMBs,addressing the issue of lithium dendrite growth and improving overall battery safety and performance. 展开更多
关键词 Lithium metal-based battery Salt-induced POLYBENZIMIDAZOLE Tunablemorphology lonic potency
在线阅读 下载PDF
Review on current development of polybenzimidazole membrane for lithium battery
3
作者 Yonggui Deng Arshad Hussain +3 位作者 Waseem Raza xingke cai Dongqing Liu Jun Shen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期579-608,共30页
With the rapid development of portable technology,lithium batteries have emerged as potential candidates for high-performance energy storage systems owing to their high energy density and cycling stability.Among the k... With the rapid development of portable technology,lithium batteries have emerged as potential candidates for high-performance energy storage systems owing to their high energy density and cycling stability.Among the key components of a lithium battery system,the separator plays a critical role as it directly influences the battery performance benchmark(cycling performance and safety).However,traditional polyolefin separators(polypropylene/polyethylene)are unable to meet the demands of highperformance and safer battery systems due to their poor electrolyte compatibility,thermal runaways,and ultimate growth of dendrites.In contrast,membranes fabricated using polybenzimidazole(PBI)exhibit excellent electrolyte wettability and outstanding thermal dimensional stability,thus holding great potential as separators for high-performance and high-safety batteries.In this paper,we present a comprehensive review of the general requirements for separators,synthesis technology for separators,and research trends focusing PBI membranes in lithium batteries to alleviate the current commercial challenges faced by conventional polyolefin separators.In addition,we discuss the future development direction for PBI battery separators by considering various factors such as production cost,ecological footprint,preparation technology,and battery component compatibility.By exploring these perspectives,we aim to promote the continued application and exploration of PBI-based materials to advance lithium battery technology. 展开更多
关键词 Lithium batteries SEPARATORS Porous separators Polybenzimidazole Membrane
在线阅读 下载PDF
Polymer “Tape”-Assisted Ball-Milling Method Fabrication Few-Atomic-Layered Bismuth for Improving K^(+)/Na^(+)Storage
4
作者 Yu Tian Hang Li +8 位作者 Shuyan Zhang Haode Zhang Guangze Li Dongqing Liu Yanyuan Qi Zelang Jian xingke cai Fujun Li Wen Chen 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2021年第3期421-427,共7页
Few-layered 2D analogs exhibit new physical/chemical properties,leading to a strong research interest and broad areas of application.Recently,lots of methods(such as ultrasonic and electrochemical methods)have already... Few-layered 2D analogs exhibit new physical/chemical properties,leading to a strong research interest and broad areas of application.Recently,lots of methods(such as ultrasonic and electrochemical methods)have already used to prepared 2D materials.However,these methods suffer from the drawbacks of low yield,high cost,or precarious state,which limit the largescale applications.Inspired by the famous Scotch tape method,we develop a ball-milling with polymer"tape"method,fabricating few-atomic-layered material,showing the high-yield,low-cost,and much stability.As electrode material,ultrathin 2D materials can shorten the ion transfer pathway,contributing to the development of high-power batteries.Meanwhile,fewatomic-layered structure can expose more active sites to increase their capacity,showing special energy storage mechanism.We use the as-prepared few-atomic-layered Bi(FALB)and reduced oxide graphene composites as the anode for potassium/sodium-ion batteries(KIBs/NIBs).The sample achieves a high reversible capacity of 395 m Ah g^(-1)for KIBs,of which FALB contributes 438 m Ah g^(-1)(higher than the theoretical capacity of Bi,386 m Ah g^(-1)),and it carries outstanding cycle and rate performance in KIBs/NIBs. 展开更多
关键词 energy storage mechanism few-atomic-layered material polymer"tape" potassium/sodium-ion batteries reduced graphene oxide
在线阅读 下载PDF
Mn-based MXene with high lithium-ion storage capacity
5
作者 Yanyan Wu Dongqing Liu +6 位作者 Xiaonan Wang Usman Ghani Muhammad Asim Mushtaq Jinfeng Yang Huarui Sun Panagiotis Tsiakaras xingke cai 《Nano Research》 SCIE EI CSCD 2024年第5期4181-4191,共11页
3d-transition metal(Fe,Co,Ni,and Mn)-based MXene materials have been predicted to demonstrate exceptional electrochemical performance because of their good electrical conductivity and the presence of metallic atoms wi... 3d-transition metal(Fe,Co,Ni,and Mn)-based MXene materials have been predicted to demonstrate exceptional electrochemical performance because of their good electrical conductivity and the presence of metallic atoms with multiple charge states.However,until now,there have been no reports on MXenes based on Fe,Co,Ni,and Mn,due to the lack of 3d-metal-layered precursors.Herein,we successfully synthesized the first 3d-transition metal-based MXenes,Mn_(2)CT_(x) by exfoliating a layered precursor derived from the anti-perovskite bulk Mn3GaC.The as-prepared Mn_(2)CT_(x) MXene nanosheets were employed as anode materials in lithium-ion batteries,which exhibited stable storage capacity of 764.7 mAh·g^(-1) at 0.5 C,placing its storage capacities at an upper-middle level compared with other reported MXene materials as well as other Mn-based anode materials.Overall,this study opens a new avenue for MXene research by synthesizing 3d-transition metal-based MXenes for electrochemical applications. 展开更多
关键词 Mn_(3)GaC Mn_(2)CT_(x) MXenes lithium-ion battery anode materials negative fading capacity
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部