期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
The Beishan underground research laboratory for geological disposal of high-level radioactive waste in China:Planning, site selection,site characterization and in situ tests 被引量:83
1
作者 Ju Wang Liang Chen +1 位作者 Rui Su xingguang zhao 《Journal of Rock Mechanics and Geotechnical Engineering》 CSCD 2018年第3期411-435,共25页
With the rapid development of nuclear power in China, the disposal of high-level radioactive waste(HLW) has become an important issue for nuclear safety and environmental protection. Deep geological disposal is inte... With the rapid development of nuclear power in China, the disposal of high-level radioactive waste(HLW) has become an important issue for nuclear safety and environmental protection. Deep geological disposal is internationally accepted as a feasible and safe way to dispose of HLW, and underground research laboratories(URLs) play an important and multi-faceted role in the development of HLW repositories. This paper introduces the overall planning and the latest progress for China's URL. On the basis of the proposed strategy to build an area-specific URL in combination with a comprehensive evaluation of the site selection results obtained during the last 33 years, the Xinchang site in the Beishan area,located in Gansu Province of northwestern China, has been selected as the final site for China's first URL built in granite. In the process of characterizing the Xinchang URL site, a series of investigations,including borehole drilling,geological mapping, geophysical surveying,hydraulic testing and in situ stress measurements, has been conducted. The investigation results indicate that the geological,hydrogeological, engineering geological and geochemical conditions of the Xinchang site are very suitable for URL construction. Meanwhile, to validate and develop construction technologies for the Beishan URL, the Beishan exploration tunnel(BET), which is a 50-m-deep facility in the Jiujing sub-area, has been constructed and several in situ tests, such as drill-and-blast tests, characterization of the excavation damaged zone(EDZ), and long-term deformation monitoring of surrounding rocks, have been performed in the BET. The methodologies and technologies established in the BET will serve for URL construction.According to the achievements of the characterization of the URL site, a preliminary design of the URL with a maximum depth of 560 m is proposed and necessary in situ tests in the URL are planned. 展开更多
关键词 Beishan Xinchang site GRANITE Underground research laboratory(URL) High-level radioactive waste(HLW) Geological disposal
在线阅读 下载PDF
Excavation of underground research laboratory ramp in granite using tunnel boring machine: Feasibility study 被引量:12
2
作者 Hongsu Ma Ju Wang +3 位作者 Ke Man Liang Chen Qiuming Gong xingguang zhao 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2020年第6期1201-1213,共13页
Underground research laboratory(URL)plays an important role in safe disposal of high-level radioactive waste(HLW).At present,the Xinchang site,located in Gansu Province of China,has been selected as the final site for... Underground research laboratory(URL)plays an important role in safe disposal of high-level radioactive waste(HLW).At present,the Xinchang site,located in Gansu Province of China,has been selected as the final site for China’s first URL,named Beishan URL.For this,a preliminary design of the Beishan URL has been proposed,including one spiral ramp,three shafts and two experimental levels.With advantages of fast advancing and limited disturbance to surrounding rock mass,the tunnel boring machine(TBM)method could be one of the excavation methods considered for the URL ramp.This paper introduces the feasibility study on using TBM to excavation of the Beishan URL ramp.The technical challenges for using TBM in Beishan URL are identified on the base of geological condition and specific layout of the spiral ramp.Then,the technical feasibility study on the specific issues,i.e.extremely hard rock mass,high abrasiveness,TBM operation,muck transportation,water drainage and material transportation,is investigated.This study demonstrates that TBM technology is a feasible method for the Beishan URL excavation.The results can also provide a reference for the design and construction of HLW disposal engineering in similar geological conditions.2020 Institute of Rock and Soil Mechanics,Chinese Academy of Sciences.Production and hosting by Elsevier B.V.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/). 展开更多
关键词 Underground research laboratory(URL) High-level radioactive waste(HLW)disposal Tunnel boring machine(TBM) Extremely hard rock mass Rock mass boreability Spiral layout Beishan
在线阅读 下载PDF
Considerations of rock dilation on modeling failure and deformation of hard rocks-a case study of the mine-by test tunnel in Canada 被引量:9
3
作者 xingguang zhao Meifeng Cai MCai 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE 2010年第4期338-349,共12页
For the compressive stress-induced failure of tunnels at depth, rock fracturing process is often closely associated with the generation of surface parallel fractures in the initial stage, and shear failure is likely t... For the compressive stress-induced failure of tunnels at depth, rock fracturing process is often closely associated with the generation of surface parallel fractures in the initial stage, and shear failure is likely to occur in the final process during the formation of shear bands, breakouts or V-shaped notches close to the excavation boundaries. However, the perfectly elastoplastic, strain-softening and elasto-brittle-plastic models cannot reasonably describe the brittle failure of hard rock tunnels under high in-situ stress conditions. These approaches often underestimate the depth of failure and overestimate the lateral extent of failure near the excavation. Based on a practical case of the mine-by test tunnel at an underground research laboratory (URL) in Canada, the influence of rock mass dilation on the depth and extent of failure and deformation is investigated using a calibrated cohesion weakening and frictional strengthening (CWFS) model. It can be found that, when modeling brittle failure of rock masses, the calibrated CWFS model with a constant dilation angle can capture the depth and extent of stress-induced brittle failure in hard rocks at a low confinement if the stress path is correctly represented, as demonstrated by the failure shape observed in the tunnel. However, using a constant dilation angle cannot simulate the nonlinear deformation behavior near the excavation boundary accurately because the dependence of rock mass dilation on confinement and plastic shear strain is not considered. It is illustrated from the numerical simulations that the proposed plastic shear strain and confinement-dependent dilation angle model in combination with the calibrated CWFS model implemented in FLAC can reasonably reveal both rock mass failure and displacement distribution in vicinity of the excavation simultaneously. The simulation results are in good agreement with the field observations and displacement measurement data. 展开更多
关键词 hard rocks brittle failure deformation dilation angle model confinement plastic shear strain mine-by test tunnel
在线阅读 下载PDF
Design and validation of the THMC China-Mock-Up test on buffer material for HLW disposal 被引量:2
4
作者 Yuemiao Liu Like Ma +5 位作者 Dan Ke Shengfei Cao Jingli Xie xingguang zhao Liang Chena Panpan Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2014年第2期119-125,共7页
According to the preliminary concept of the high-level radioactive waste (HLW) repository in China, a large-scale mock-up facility, named China-Mock-Up was constructed in the laboratory of Beijing Research Institute... According to the preliminary concept of the high-level radioactive waste (HLW) repository in China, a large-scale mock-up facility, named China-Mock-Up was constructed in the laboratory of Beijing Research Institute of Uranium Geology (BRIUG). A heater, which simulates a container of radioactive waste, is placed inside the compacted Gaomiaozi (GMZ)-Na-bentonite blocks and pellets. Water inflow through the barrier from its outer surface is used to simulate the intake of groundwater. The numbers of water injection pipes, injection pressure and the insulation layer were determined based on the nu- merical modeling simulations. The current experimental data of the facility are herein analyzed. The experiment is intended to evaluate the thermo-hydro-mechano-chemical (THMC) processes occurring in the compacted bentonite-buffer during the early stage of HLW disposal and to provide a reliable database for numerical modeling and further investigation of engineered barrier system (EBS), and the design of HLW repository. 展开更多
关键词 High-level radioactive waste (HLW) Mock-Up test Numerical modeling Bentonite
在线阅读 下载PDF
Unloading-induced permeability recovery in rock fractures
5
作者 Tao Lin Wen Meng +5 位作者 Yuedu Chen Zhihong zhao Bing Liu Jintong Zhang Sicong Chen xingguang zhao 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第12期3148-3162,共15页
Underground space creation and energy extraction, which induce unloading on rock fractures, commonly occur in various rock engineering projects, and rock engineering projects are subjected to high temperatures with in... Underground space creation and energy extraction, which induce unloading on rock fractures, commonly occur in various rock engineering projects, and rock engineering projects are subjected to high temperatures with increasing depth. Fluid flow behavior of rock fractures is a critical issue in many subsurface rock engineering projects. Previous studies have extensively considered permeability evolution in rock fractures under loading phase, whereas changes in fracture permeability under unloading phase have not been fully understood. To examine the unloading-induced changes in fracture permeability under different temperatures, we performed water flow-through tests on fractured rock samples subjected to decreasing confining pressures and different temperatures. The experimental results show that the permeability of fracture increases with unloading of confining pressure but decreases with loading-unloading cycles. Temperature may affect fracture permeability when it is higher than a certain threshold. An empirical model of fracture hydraulic aperture including two material parameters of initial normal stiffness and maximum normal closure can well describe the permeability changes in rough rock fracture subjected to loading-unloading cycles and heating. A coupled thermo-mechanical model considering asperity damage is finally used to understand the influences of stress paths and temperatures on fracture permeability. 展开更多
关键词 UNLOADING PERMEABILITY Rock fracture Temperature Empirical model
在线阅读 下载PDF
Statically accelerated experimental simulation on the deterioration of dynamic strength of rock
6
作者 Zhuoying Tan Meifeng Cai xingguang zhao 《Journal of University of Science and Technology Beijing》 CSCD 2005年第4期298-302,共5页
In order to reveal the strength deterioration law of rock mass under an acidified environment, a series of experiments on strength deterioration and the environmental effect on marble and diabase under the conditions ... In order to reveal the strength deterioration law of rock mass under an acidified environment, a series of experiments on strength deterioration and the environmental effect on marble and diabase under the conditions of three kinds of acids (H2SO4, HNO3 and HC1) with three contents (1.0%, 5.0% and 10.0%) in a static fluid surrounding were carried out by single factor simulation. After the stones had been saturated in the above solutions for 90 days, an indoor weathering simulation had been observed for 300 days and its strength characteristics were measured under static/dynamic load and that results were compared with those under the natural condition. It is evident that the strength is emaciated greatly after the stones eroded by the liquids, whether under the static or dynamic load. 展开更多
关键词 environmental acidification rock strength MARBLE DIABASE
在线阅读 下载PDF
Progress on rock mechanics research of Beishan granite for geological disposal of high-level radioactive waste in China 被引量:2
7
作者 Liang Chen xingguang zhao +4 位作者 Jian Liu Hongsu Ma Chunping Wang Haiyang Zhang Ju Wang 《Rock Mechanics Bulletin》 2023年第3期15-31,共17页
The mechanical behavior of host rock for a deep geological repository of high-level radioactive waste plays a key role in ensuring the isolation function of host rock as a natural barrier under the multi-field couplin... The mechanical behavior of host rock for a deep geological repository of high-level radioactive waste plays a key role in ensuring the isolation function of host rock as a natural barrier under the multi-field coupling environment.For a better understanding of granite in China's Beishan pre-selected area for geological disposal of high-level radioactive waste,a series of investigations were carried out on in-situ stress field of rock mass at depth,strength and deformation characteristics of rocks under different stress and temperature conditions,and rock boreability and adaptability to Tunnel Boring Machine(TBM)technology.The results indicate that Beishan granite shows typical characteristics as a hard and brittle rock with a quite low permeability,and it is favorable to geological disposal.Meanwhile,a new rock mass suitability evaluation system was proposed,and the rock mass mainly composed of Beishan granite was proven to be suitable for geological disposal.Besides,the constructability of Beishan granite at engineering scale was tested and verified through field tests in the Beishan Exploration Tunnel(BET).Here,we summarize the main outcomes of rock mechanics research on Beishan granite in the past years and introduced the current progress of Beishan underground research laboratory(URL)for geological disposal. 展开更多
关键词 Rock mechanics GRANITE Underground research laboratory Geological disposal Beishan area
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部