期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
The Orthogonal Bases of Exponential Functions Based on Moran-Sierpinski Measures
1
作者 Qi Rong DENG xing gang he +1 位作者 Ming Tian LI Yuan Ling YE 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2024年第7期1804-1824,共21页
Let An∈M2(ℤ)be integral matrices such that the infinite convolution of Dirac measures with equal weightsμ{A_(n),n≥1}δA_(1)^(-1)D*δA_(1)^(-1)A_(2)^(-2)D*…is a probability measure with compact support,where D={(0,... Let An∈M2(ℤ)be integral matrices such that the infinite convolution of Dirac measures with equal weightsμ{A_(n),n≥1}δA_(1)^(-1)D*δA_(1)^(-1)A_(2)^(-2)D*…is a probability measure with compact support,where D={(0,0)^(t),(1,0)^(t),(0,1)^(t)}is the Sierpinski digit.We prove that there exists a setΛ⊂ℝ2 such that the family{e2πi〈λ,x〉:λ∈Λ} is an orthonormal basis of L^(2)(μ{A_(n),n≥1})if and only if 1/3(1,-1)A_(n)∈Z^(2)for n≥2 under some metric conditions on A_(n). 展开更多
关键词 Moran-Sierpinski measures orthonormal basis of exponential functions self-affine measures spectral measures
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部