[Objectives]This study was conducted to explore a functional organic material formula suitable for watermelon cultivation with high quality,high yield and high efficiency.[Methods]Four treatments were set in the exper...[Objectives]This study was conducted to explore a functional organic material formula suitable for watermelon cultivation with high quality,high yield and high efficiency.[Methods]Four treatments were set in the experiment,namely four functional organic materials,garlic straw treatment(T_(1)),onion straw treatment(T_(2)),garlic straw+sheep manure treatment(T_(3))and onion straw+chicken manure treatment(T_(4)),to investigate the effects of different functional organic materials on fresh weight,quality,single-melon weight and SPAD value of watermelon.[Results]The effects of different functional organic materials on fresh weight,quality,single-melon weight and SPAD value of watermelon were quite different.The fresh weight,quality,single-melon weight and SPAD value of watermelon were higher in treatment T_(3)applying garlic straw and sheep manure and treatment T_(4)applying onion straw and chicken manure than in treatment T_(1)applying garlic straw and treatment T_(2)applying onion straw.Specifically,the fresh weight of whole plant was the highest in treatment T_(3),followed by treatment T_(4),and the values of the two treatments increased by 12.83%and 5.94%respectively compared with treatment T_(1);the weight of single melon was the highest in treatment T_(3),followed by treatment T_(4),and the values of the two treatments increased by 42.45%and 31.77%respectively compared with treatment T_(2);and the SPAD values of treatments T_(3)and T_(4)were significantly higher than those of treatments T_(1)and T_(2),and the value of treatment T_(3)was the largest.[Conclusions]This study provides theoretical support for the popularization and application of fertilization techniques combining organic fertilizers and reduced chemical fertilizers for watermelon.展开更多
The past few years have witnessed a remarkable progress of perovskite solar cells(PSCs),which can be attributed to the high light absorption coefficient,tunable bandgap,long carrier diffusion length,solution processab...The past few years have witnessed a remarkable progress of perovskite solar cells(PSCs),which can be attributed to the high light absorption coefficient,tunable bandgap,long carrier diffusion length,solution processability at low temperature and relatively low cost of perovskite materials.展开更多
Perovskite solar cells(PSCs) are undergoing rapid development and the power conversion efficiency reaches 25.7% which attracts increasing attention on their commercialization recently.In this review,we summarized the ...Perovskite solar cells(PSCs) are undergoing rapid development and the power conversion efficiency reaches 25.7% which attracts increasing attention on their commercialization recently.In this review,we summarized the recent progress of PSCs based on device structures,perovskite-based tandem cells,large-area modules,stability,applications and industrialization.Last,the challenges and perspectives are discussed,aiming at providing a thrust for the commercialization of PSCs in the near future.展开更多
Polyetheretherketone(PEEK)has been widely used as orthopedic and dental materials due to excellent mechanical and physicochemical tolerance.However,its biological inertness,poor osteoinduction,and weak antibacterial a...Polyetheretherketone(PEEK)has been widely used as orthopedic and dental materials due to excellent mechanical and physicochemical tolerance.However,its biological inertness,poor osteoinduction,and weak antibacterial activity make the clinical applications in a dilemma.Inspired by the mussel adhesion mechanism,here we reported a biomimetic surface strategy for rational integration and optimization of anti-infectivity and osteo-inductivity onto PEEK surfaces using a mussel foot proteins(Mfps)-mimic peptide with clickable azido terminal.The peptide enables mussel-like adhesion on PEEK biomaterial surfaces,leaving azido groups for the further steps of biofunctionalizations.In this study,antimicrobial peptide(AMP)and osteogenic growth peptide(OGP)were bioorthogonally clicked on the azido-modified PEEK biomaterials to obtain a dual-effect of host defense and tissue repair.Since bioorthogonal clicking allows precise collocation between AMP and OGP through changing their feeding molar ratios,an optimal PEEK surface was finally obtained in this research,which could long-term inhibit bacterial growth,stabilize bone homeostasis and facilitate interfacial bone regeneration.In a word,this upgraded mussel surface strategy proposed in this study is promising for the surface bioengineering of inert medical implants,in particular,achieving rational integration of multiple biofunctions to match clinical requirements.展开更多
The immune responses are involved in every stage after implantation but the reported immune-regulated materials only work at the beginning without fully considering the different phases of bone healing.Here,poly(aryl-...The immune responses are involved in every stage after implantation but the reported immune-regulated materials only work at the beginning without fully considering the different phases of bone healing.Here,poly(aryl-ether-ether-ketone)(PEEK)is coated with a programmed surface,which rapidly releases interleukin-10(IL-10)in the first week and slowly delivers dexamethasone(DEX)up to 4 weeks.Owing to the synergistic effects of IL-10 and DEX,an aptly weak inflammation is triggered within the first week,followed by significant M2 polarization of macrophages and upregulation of the autophagy-related factors.The suitable immunomodulatory activities pave the way for osteogenesis and the steady release of DEX facilitates bone regeneration thereafter.The sequential immune-mediated process is also validated by an 8-week implementation on a rat model.This is the first attempt to construct implants by taking advantage of both immune-mediated modulation and sequential regulation spanning all bone regeneration phases,which provides insights into the fabrication of advanced biomaterials for tissue engineering and immunological therapeutics.展开更多
基金Supported by Shangqiu Science and Technology Research Project(202405).
文摘[Objectives]This study was conducted to explore a functional organic material formula suitable for watermelon cultivation with high quality,high yield and high efficiency.[Methods]Four treatments were set in the experiment,namely four functional organic materials,garlic straw treatment(T_(1)),onion straw treatment(T_(2)),garlic straw+sheep manure treatment(T_(3))and onion straw+chicken manure treatment(T_(4)),to investigate the effects of different functional organic materials on fresh weight,quality,single-melon weight and SPAD value of watermelon.[Results]The effects of different functional organic materials on fresh weight,quality,single-melon weight and SPAD value of watermelon were quite different.The fresh weight,quality,single-melon weight and SPAD value of watermelon were higher in treatment T_(3)applying garlic straw and sheep manure and treatment T_(4)applying onion straw and chicken manure than in treatment T_(1)applying garlic straw and treatment T_(2)applying onion straw.Specifically,the fresh weight of whole plant was the highest in treatment T_(3),followed by treatment T_(4),and the values of the two treatments increased by 12.83%and 5.94%respectively compared with treatment T_(1);the weight of single melon was the highest in treatment T_(3),followed by treatment T_(4),and the values of the two treatments increased by 42.45%and 31.77%respectively compared with treatment T_(2);and the SPAD values of treatments T_(3)and T_(4)were significantly higher than those of treatments T_(1)and T_(2),and the value of treatment T_(3)was the largest.[Conclusions]This study provides theoretical support for the popularization and application of fertilization techniques combining organic fertilizers and reduced chemical fertilizers for watermelon.
基金L.Ding thanks the National Key Research and Development Program of China(2017YFA0206600)the National Natural Science Foundation of China(51773045,21772030,51922032,21961160720)for financial support+3 种基金Y.Yuan thanks National Natural Science Foundation of China(51673218)the Innovation-Driven Project of Central South University(2020CX006)the Hunan Provincial Science&Technology Department(No.2017XK2030)the Postgraduate Research and Innovation Project of Central South University(1053320192763)for financial support.
文摘The past few years have witnessed a remarkable progress of perovskite solar cells(PSCs),which can be attributed to the high light absorption coefficient,tunable bandgap,long carrier diffusion length,solution processability at low temperature and relatively low cost of perovskite materials.
文摘Perovskite solar cells(PSCs) are undergoing rapid development and the power conversion efficiency reaches 25.7% which attracts increasing attention on their commercialization recently.In this review,we summarized the recent progress of PSCs based on device structures,perovskite-based tandem cells,large-area modules,stability,applications and industrialization.Last,the challenges and perspectives are discussed,aiming at providing a thrust for the commercialization of PSCs in the near future.
基金supported by the National Key Research and Development Program of China(2019YFA0112000)Research and Development of Biomedical Materials and Substitution of Tissue and Organ Repair under the National Key R&D Program(2016YFC1101505)+7 种基金the National Natural Science Foundation of China(82072425,82072498,81873991,81073990,21875092,31922040 and 81672238)the Young Medical Talents of Jiangsu Province(QNRC2016751)the Natural Science Foundation of Jiangsu Province(BK20180001)the Innovation and Entrepreneurship Program of Jiangsu Provincethe“Six Talent Peaks”program of Jiangsu Province(2018-XCL-013)the Basic Applied Research Program of Suzhou City(SYS2018032,KJXW2017009)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)the Special Project of Diagnosis and Treatment for Clinical Diseases of Suzhou(LCZX202003).
文摘Polyetheretherketone(PEEK)has been widely used as orthopedic and dental materials due to excellent mechanical and physicochemical tolerance.However,its biological inertness,poor osteoinduction,and weak antibacterial activity make the clinical applications in a dilemma.Inspired by the mussel adhesion mechanism,here we reported a biomimetic surface strategy for rational integration and optimization of anti-infectivity and osteo-inductivity onto PEEK surfaces using a mussel foot proteins(Mfps)-mimic peptide with clickable azido terminal.The peptide enables mussel-like adhesion on PEEK biomaterial surfaces,leaving azido groups for the further steps of biofunctionalizations.In this study,antimicrobial peptide(AMP)and osteogenic growth peptide(OGP)were bioorthogonally clicked on the azido-modified PEEK biomaterials to obtain a dual-effect of host defense and tissue repair.Since bioorthogonal clicking allows precise collocation between AMP and OGP through changing their feeding molar ratios,an optimal PEEK surface was finally obtained in this research,which could long-term inhibit bacterial growth,stabilize bone homeostasis and facilitate interfacial bone regeneration.In a word,this upgraded mussel surface strategy proposed in this study is promising for the surface bioengineering of inert medical implants,in particular,achieving rational integration of multiple biofunctions to match clinical requirements.
基金The authors acknowledge the National Natural Science Foundation of China(nos.31922040 and 32000962)Shenzhen Science and Technology Research Funding(nos.SGLH20180625144002074 and JCYJ20180507182637685)+4 种基金Guangdong Basic and Applied Basic Research Foundation(no.2020B1515120078)Youth Innovation Promotion Association of the Chinese Academy of Sciences(nos.2017416 and 2020353)Shenzhen-Hong Kong Innovative Collaborative Research and Development Program(no.9240014)City University of Hong Kong Strategic Research Grant(SRG)(no.7005264)Hong Kong Research Grants Council(RGC)General Research Funds(GRF)(no.CityU 11205617).
文摘The immune responses are involved in every stage after implantation but the reported immune-regulated materials only work at the beginning without fully considering the different phases of bone healing.Here,poly(aryl-ether-ether-ketone)(PEEK)is coated with a programmed surface,which rapidly releases interleukin-10(IL-10)in the first week and slowly delivers dexamethasone(DEX)up to 4 weeks.Owing to the synergistic effects of IL-10 and DEX,an aptly weak inflammation is triggered within the first week,followed by significant M2 polarization of macrophages and upregulation of the autophagy-related factors.The suitable immunomodulatory activities pave the way for osteogenesis and the steady release of DEX facilitates bone regeneration thereafter.The sequential immune-mediated process is also validated by an 8-week implementation on a rat model.This is the first attempt to construct implants by taking advantage of both immune-mediated modulation and sequential regulation spanning all bone regeneration phases,which provides insights into the fabrication of advanced biomaterials for tissue engineering and immunological therapeutics.