In this paper,we investigate a spectrumsensing system in the presence of a satellite,where the satellite works as a sensing node.Considering the conventional energy detection method is sensitive to the noise uncertain...In this paper,we investigate a spectrumsensing system in the presence of a satellite,where the satellite works as a sensing node.Considering the conventional energy detection method is sensitive to the noise uncertainty,thus,a temporal convolutional network(TCN)based spectrum-sensing method is designed to eliminate the effect of the noise uncertainty and improve the performance of spectrum sensing,relying on the offline training and the online detection stages.Specifically,in the offline training stage,spectrum data captured by the satellite is sent to the TCN deployed on the gateway for training purpose.Moreover,in the online detection stage,the well trained TCN is utilized to perform real-time spectrum sensing,which can upgrade spectrum-sensing performance by exploiting the temporal features.Additionally,simulation results demonstrate that the proposed method achieves a higher probability of detection than that of the conventional energy detection(ED),the convolutional neural network(CNN),and deep neural network(DNN).Furthermore,the proposed method outperforms the CNN and the DNN in terms of a lower computational complexity.展开更多
In this paper,we investigate the spectrum sensing performance of a distributed satellite clusters(DSC)under perturbation,aiming to enhance the sensing ability of weak signals in the coexistence of strong and weak sign...In this paper,we investigate the spectrum sensing performance of a distributed satellite clusters(DSC)under perturbation,aiming to enhance the sensing ability of weak signals in the coexistence of strong and weak signals.Specifically,we propose a cooperative beamforming(BF)algorithm though random antenna array theory to fit the location characteristic of DSC and derive the average far-field beam pattern under perturbation.Then,a constrained optimization problem with maximizing the signal to interference plus noise ratio(SINR)is modeled to obtain the BF weight vectors,and an approximate expression of SINR is presented in the presence of the mismatch of signal steering vector.Finally,we derive the closedform expression of the detection probability for the considered DSC over Shadowed-Rician fading channels.Simulation results are provided to validate our theoretical analysis and to characterize the impact of various parameters on the system performance.展开更多
In this paper,we investigate a geosynchronous earth orbit(GEO)and low earth orbit(LEO)coexisting satellite communication system.To decrease the interference imposed on the GEO user caused by LEO satellites,we propose ...In this paper,we investigate a geosynchronous earth orbit(GEO)and low earth orbit(LEO)coexisting satellite communication system.To decrease the interference imposed on the GEO user caused by LEO satellites,we propose a joint beammanagement and power-allocation(JBMPA)scheme to maximize signal-to-interference plus noise ratio(SINR)at the GEO user,whilst maintaining the ongoing wireless links spanning from LEO satellites to their corresponding users.Specifically,we first analyze the overlapping coverage among GEO and LEO satellites,to obtain the LEO-satellite set in which their beams impose interference on the GEO user.Then,considering the traffic of LEO satellites in the obtained set,we design a beam-management method to turn off and switch interference beams of LEO satellites.Finally,we further propose a deep Q-network(DQN)aided power allocation algorithm to allocate the transmit power for the ongoing LEO satellites in the obtained set,whose beams are unable to be managed.Numerical results show that comparing with the traditional fixed beam with power allocation(FBPA)scheme,the proposed JBMPA can achieve a higher SINR and a lower outage probability,whilst guaranteeing the ongoing wireless transmissions of LEO satellites.展开更多
Considering the global demands on Internet of things(IoT),and the limitation of constructing base stations for the terrestrial IoT,the satellite IoT approach is a realizable and powerful supplement to the terrestrial ...Considering the global demands on Internet of things(IoT),and the limitation of constructing base stations for the terrestrial IoT,the satellite IoT approach is a realizable and powerful supplement to the terrestrial IoT.Meanwhile,in order to dynamically access the available terrestrial and satellite networks,IoT terminals may have the ability of accessing both the terrestrial IoT and the satellite IoT,leading to great challenges on the access-control of the IoT.In this paper,we design a satellite-terrestrial integrated architecture for the IoT relying on the software defined network(SDN).Moreover,based on this architecture,we further propose a dynamic channel resource allocation algorithm to control the access of the IoT terminals with different priorities.Simulation results show that the demands on the probabilities of successful access of IoT terminals with various priorities can be simultaneously met if the access of the IoT terminals are well controlled.展开更多
基金the National Science Foundation of China (No.91738201, 61971440)the Jiangsu Province Basic Research Project (No.BK20192002)+1 种基金the China Postdoctoral Science Foundation (No.2018M632347)the Natural Science Research of Higher Education Institutions of Jiangsu Province (No.18KJB510030)。
文摘In this paper,we investigate a spectrumsensing system in the presence of a satellite,where the satellite works as a sensing node.Considering the conventional energy detection method is sensitive to the noise uncertainty,thus,a temporal convolutional network(TCN)based spectrum-sensing method is designed to eliminate the effect of the noise uncertainty and improve the performance of spectrum sensing,relying on the offline training and the online detection stages.Specifically,in the offline training stage,spectrum data captured by the satellite is sent to the TCN deployed on the gateway for training purpose.Moreover,in the online detection stage,the well trained TCN is utilized to perform real-time spectrum sensing,which can upgrade spectrum-sensing performance by exploiting the temporal features.Additionally,simulation results demonstrate that the proposed method achieves a higher probability of detection than that of the conventional energy detection(ED),the convolutional neural network(CNN),and deep neural network(DNN).Furthermore,the proposed method outperforms the CNN and the DNN in terms of a lower computational complexity.
基金partially supported by the National Science Foundation of China (No.91738201,U21A20450 and 62171234)the Jiangsu Province Basic Research Project (No. BK20192002)the postgraduate research & practice innovation program of jiangsu province under Grant KYCX20_0708
文摘In this paper,we investigate the spectrum sensing performance of a distributed satellite clusters(DSC)under perturbation,aiming to enhance the sensing ability of weak signals in the coexistence of strong and weak signals.Specifically,we propose a cooperative beamforming(BF)algorithm though random antenna array theory to fit the location characteristic of DSC and derive the average far-field beam pattern under perturbation.Then,a constrained optimization problem with maximizing the signal to interference plus noise ratio(SINR)is modeled to obtain the BF weight vectors,and an approximate expression of SINR is presented in the presence of the mismatch of signal steering vector.Finally,we derive the closedform expression of the detection probability for the considered DSC over Shadowed-Rician fading channels.Simulation results are provided to validate our theoretical analysis and to characterize the impact of various parameters on the system performance.
基金partially supported by the National Science Foundation of China (No. 62171234, 91738201, and U21A20450)the Jiangsu Province Basic Research Project (No. BK20192002)the National Key Laboratory of Science and Technology on Space Micrwave (No. 6142411422118)
文摘In this paper,we investigate a geosynchronous earth orbit(GEO)and low earth orbit(LEO)coexisting satellite communication system.To decrease the interference imposed on the GEO user caused by LEO satellites,we propose a joint beammanagement and power-allocation(JBMPA)scheme to maximize signal-to-interference plus noise ratio(SINR)at the GEO user,whilst maintaining the ongoing wireless links spanning from LEO satellites to their corresponding users.Specifically,we first analyze the overlapping coverage among GEO and LEO satellites,to obtain the LEO-satellite set in which their beams impose interference on the GEO user.Then,considering the traffic of LEO satellites in the obtained set,we design a beam-management method to turn off and switch interference beams of LEO satellites.Finally,we further propose a deep Q-network(DQN)aided power allocation algorithm to allocate the transmit power for the ongoing LEO satellites in the obtained set,whose beams are unable to be managed.Numerical results show that comparing with the traditional fixed beam with power allocation(FBPA)scheme,the proposed JBMPA can achieve a higher SINR and a lower outage probability,whilst guaranteeing the ongoing wireless transmissions of LEO satellites.
基金the National Science Foundation of China under Grant 91738201 and Grant 61971440the Jiangsu Province Basic Research Project under Grant BK20192002+1 种基金the China Postdoctoral Science Foundation under Grant 2018M632347the Natural Science Research of Higher Education Institutions of Jiangsu Province under Grant I8KJB510030。
文摘Considering the global demands on Internet of things(IoT),and the limitation of constructing base stations for the terrestrial IoT,the satellite IoT approach is a realizable and powerful supplement to the terrestrial IoT.Meanwhile,in order to dynamically access the available terrestrial and satellite networks,IoT terminals may have the ability of accessing both the terrestrial IoT and the satellite IoT,leading to great challenges on the access-control of the IoT.In this paper,we design a satellite-terrestrial integrated architecture for the IoT relying on the software defined network(SDN).Moreover,based on this architecture,we further propose a dynamic channel resource allocation algorithm to control the access of the IoT terminals with different priorities.Simulation results show that the demands on the probabilities of successful access of IoT terminals with various priorities can be simultaneously met if the access of the IoT terminals are well controlled.