A previously healthy 25-year-old man with no known risk factors was presented at the emergency room with a 3 h history of abdominal and loin pain.Physical examination and lab data showed no specific findings except te...A previously healthy 25-year-old man with no known risk factors was presented at the emergency room with a 3 h history of abdominal and loin pain.Physical examination and lab data showed no specific findings except tenderness,slight white cell count elevation and decreased haemoglobin level.The patient’s condition deteriorated over the following hours and he died despite resuscitation attempts.Autopsy revealed a 2.5-cm longitudinal tear in the intima of the right common iliac artery,which formed a thrombosed false lumen extending to the abdominal aorta proximally and to the left common iliac artery.Histopathologic examination revealed the characteristic changes of fibromuscular dysplasia(FMD).FMD involving the common iliac arteries is extremely rare;only six cases have been reported previously,and only two of those included forensic findings.The presented case is the first case of FMD with intimal tearing in the right common iliac artery,with propagation to the left common iliac artery and abdominal aorta.When a previously healthy young adult without hypertension or other risk factors presents with acute abdominal and loin pain,systemic vascular disease should be on the list of differential diagnoses.Careful and complete evaluation of multiple arteries can be critical.展开更多
The facial expressions are a mirror of the elusive emotion hidden in the mind,and thus,capturing expressions is a crucial way of merging the inward world and virtual world.However,typical facial expression recognition...The facial expressions are a mirror of the elusive emotion hidden in the mind,and thus,capturing expressions is a crucial way of merging the inward world and virtual world.However,typical facial expression recognition(FER)systems are restricted by environments where faces must be clearly seen for computer vision,or rigid devices that are not suitable for the time-dynamic,curvilinear faces.Here,we present a robust,highly wearable FER system that is based on deep-learning-assisted,soft epidermal electronics.The epidermal electronics that can fully conform on faces enable high-fidelity biosignal acquisition without hindering spontaneous facial expressions,releasing the constraint of movement,space,and light.The deep learning method can significantly enhance the recognition accuracy of facial expression types and intensities based on a small sample.The proposed wearable FER system is superior for wide applicability and high accuracy.The FER system is suitable for the individual and shows essential robustness to different light,occlusion,and various face poses.It is totally different from but complementary to the computer vision technology that is merely suitable for simultaneous FER of multiple individuals in a specific place.This wearable FER system is successfully applied to human-avatar emotion interaction and verbal communication disambiguation in a real-life environment,enabling promising human-computer interaction applications.展开更多
3D model retrieval virtual reality applications. In can benefit many downstream this paper, we propose a new sketch-based 3D model retrieval framework by coupling local features and manifold ranking. At technical fron...3D model retrieval virtual reality applications. In can benefit many downstream this paper, we propose a new sketch-based 3D model retrieval framework by coupling local features and manifold ranking. At technical fronts, we exploit spatial pyramids based local structures to facilitate the efficient construction of feature descriptors. Meanwhile, we propose an improved manifold ranking method, wherein all the categories between arbitrary model pairs will be taken into account. Since the smooth and detail-preserving line drawings of 3D model are important for sketch-based 3D model retrieval, the Difference of Gaussians (DOG) method is employed to extract the line drawings over the projected depth images of 3D model, and Bezier Curve is then adopted to further optimize the extracted line drawing. On that basis, we develop a 3D model retrieval engine to verify our method. We have conducted extensive experiments over various public benchmarks, and have made comprehensive comparisons with some state-of-the-art 3D retrieval methods. All the evaluation results based on the widely-used indicators prove the superiority of our method in accuracy, reliability, robustness, and versatility.展开更多
Biofilm formation, one of the primary causes of biofouling, results in reduced membrane flux or increased transmembrane pressure and thus represents a major impediment to the wider implementation of membrane bioreact...Biofilm formation, one of the primary causes of biofouling, results in reduced membrane flux or increased transmembrane pressure and thus represents a major impediment to the wider implementation of membrane bioreactor (MBR) technologies for water purification. Most studies have focused on the role of bacteria in membrane fouling as they are the most dominant and best studied organisms present in the MBR. In contrast, there is limited information on the role of the archaeal community in biofilm formation in MBRs. This study investigated the composition of the archaeal community during the process of biofouling in an MBR. The archaeal community was observed to have lower richness and diversity in the biofilm than the sludge during the establishment ofbiofilms at low transmembrane pressure (TMP). Clustering of the communities based on the Bray-Curtis similarity matrix indicated that a subset of the sludge archaeal community formed the initial biofilms. The archaeal community in the biofilm was mainly composed of Thermoprotei, Thermoplasmata, Thermococci, Methanopyri, Methanomicrobia and Halobacteria. Among them, the Thermoprotei and Thermoplasmata were present at higher relative proportions in the biofilms than they were in the sludge. Additionally, the Thermoprotei, Thermoplasmata and Thermococci were the dominant organisms detected in the initial biofilms at low TMP, while as the TMP increased, the Methanopyri, Methanomicrobia, Aciduliprofundum and Halobacteria were present at higher abundances in the biofilms at high TMP.展开更多
The facial expressions are a mirror of the elusive emotion hidden in the mind,and thus,capturing expressions is a crucial way of merging the inward world and virtual world.However,typical facial expression recognition...The facial expressions are a mirror of the elusive emotion hidden in the mind,and thus,capturing expressions is a crucial way of merging the inward world and virtual world.However,typical facial expression recognition(FER)systems are restricted by environments where faces must be clearly seen for computer vision,or rigid devices that are not suitable for the time-dynamic,curvilinear faces.Here,we present a robust,highly wearable FER system that is based on deep-learning-assisted,soft epidermal electronics.The epidermal electronics that can fully conform on faces enable high-fidelity biosignal acquisition without hindering spontaneous facial expressions,releasing the constraint of movement,space,and light.The deep learning method can significantly enhance the recognition accuracy of facial expression types and intensities based on a small sample.The proposed wearable FER system is superior for wide applicability and high accuracy.The FER system is suitable for the individual and shows essential robustness to different light,occlusion,and various face poses.It is totally different from but complementary to the computer vision technology that is merely suitable for simultaneous FER of multiple individuals in a specific place.This wearable FER system is successfully applied to human-avatar emotion interaction and verbal communication disambiguation in a real-life environment,enabling promising human-computer interaction applications.展开更多
文摘A previously healthy 25-year-old man with no known risk factors was presented at the emergency room with a 3 h history of abdominal and loin pain.Physical examination and lab data showed no specific findings except tenderness,slight white cell count elevation and decreased haemoglobin level.The patient’s condition deteriorated over the following hours and he died despite resuscitation attempts.Autopsy revealed a 2.5-cm longitudinal tear in the intima of the right common iliac artery,which formed a thrombosed false lumen extending to the abdominal aorta proximally and to the left common iliac artery.Histopathologic examination revealed the characteristic changes of fibromuscular dysplasia(FMD).FMD involving the common iliac arteries is extremely rare;only six cases have been reported previously,and only two of those included forensic findings.The presented case is the first case of FMD with intimal tearing in the right common iliac artery,with propagation to the left common iliac artery and abdominal aorta.When a previously healthy young adult without hypertension or other risk factors presents with acute abdominal and loin pain,systemic vascular disease should be on the list of differential diagnoses.Careful and complete evaluation of multiple arteries can be critical.
基金supported by the National Natural Science Foundation of China(grant number 51925503)the Program for HUST Academic Frontier Youth Teamthe HUST“Qihang Fund.”。
文摘The facial expressions are a mirror of the elusive emotion hidden in the mind,and thus,capturing expressions is a crucial way of merging the inward world and virtual world.However,typical facial expression recognition(FER)systems are restricted by environments where faces must be clearly seen for computer vision,or rigid devices that are not suitable for the time-dynamic,curvilinear faces.Here,we present a robust,highly wearable FER system that is based on deep-learning-assisted,soft epidermal electronics.The epidermal electronics that can fully conform on faces enable high-fidelity biosignal acquisition without hindering spontaneous facial expressions,releasing the constraint of movement,space,and light.The deep learning method can significantly enhance the recognition accuracy of facial expression types and intensities based on a small sample.The proposed wearable FER system is superior for wide applicability and high accuracy.The FER system is suitable for the individual and shows essential robustness to different light,occlusion,and various face poses.It is totally different from but complementary to the computer vision technology that is merely suitable for simultaneous FER of multiple individuals in a specific place.This wearable FER system is successfully applied to human-avatar emotion interaction and verbal communication disambiguation in a real-life environment,enabling promising human-computer interaction applications.
基金The authors would like to thank Zhang Dongdong for his great help in experiments. This work was supported by the National Natural Science Foundation of China (Grant No. 61602324), the Scientific Research Project of Beijing Educational Committeen (KM201710028018), the open funding project of State Key Laboratory of Virtual Reality Technology and Systems, Beihang University (BUAA-VR-17KF-12) and Beijing Advanced Innovation Center for Imaging Technology (BAlCIT-2016004).
文摘3D model retrieval virtual reality applications. In can benefit many downstream this paper, we propose a new sketch-based 3D model retrieval framework by coupling local features and manifold ranking. At technical fronts, we exploit spatial pyramids based local structures to facilitate the efficient construction of feature descriptors. Meanwhile, we propose an improved manifold ranking method, wherein all the categories between arbitrary model pairs will be taken into account. Since the smooth and detail-preserving line drawings of 3D model are important for sketch-based 3D model retrieval, the Difference of Gaussians (DOG) method is employed to extract the line drawings over the projected depth images of 3D model, and Bezier Curve is then adopted to further optimize the extracted line drawing. On that basis, we develop a 3D model retrieval engine to verify our method. We have conducted extensive experiments over various public benchmarks, and have made comprehensive comparisons with some state-of-the-art 3D retrieval methods. All the evaluation results based on the widely-used indicators prove the superiority of our method in accuracy, reliability, robustness, and versatility.
基金supported by a research grant (MEWRC651/ 06/177) from the Environment and Water Industry Programme Office of Singapore
文摘Biofilm formation, one of the primary causes of biofouling, results in reduced membrane flux or increased transmembrane pressure and thus represents a major impediment to the wider implementation of membrane bioreactor (MBR) technologies for water purification. Most studies have focused on the role of bacteria in membrane fouling as they are the most dominant and best studied organisms present in the MBR. In contrast, there is limited information on the role of the archaeal community in biofilm formation in MBRs. This study investigated the composition of the archaeal community during the process of biofouling in an MBR. The archaeal community was observed to have lower richness and diversity in the biofilm than the sludge during the establishment ofbiofilms at low transmembrane pressure (TMP). Clustering of the communities based on the Bray-Curtis similarity matrix indicated that a subset of the sludge archaeal community formed the initial biofilms. The archaeal community in the biofilm was mainly composed of Thermoprotei, Thermoplasmata, Thermococci, Methanopyri, Methanomicrobia and Halobacteria. Among them, the Thermoprotei and Thermoplasmata were present at higher relative proportions in the biofilms than they were in the sludge. Additionally, the Thermoprotei, Thermoplasmata and Thermococci were the dominant organisms detected in the initial biofilms at low TMP, while as the TMP increased, the Methanopyri, Methanomicrobia, Aciduliprofundum and Halobacteria were present at higher abundances in the biofilms at high TMP.
基金supported by the National Natural Science Foundation of China(grant number 51925503)the Program for HUST Academic Frontier Youth Team,and the HUST“Qihang Fund.”The general characterization facilities are provided by the Flexible Electronics Manufacturing Laboratory in Comprehensive Experiment Center for Advanced Manufacturing Equipment and Technology at HUST.
文摘The facial expressions are a mirror of the elusive emotion hidden in the mind,and thus,capturing expressions is a crucial way of merging the inward world and virtual world.However,typical facial expression recognition(FER)systems are restricted by environments where faces must be clearly seen for computer vision,or rigid devices that are not suitable for the time-dynamic,curvilinear faces.Here,we present a robust,highly wearable FER system that is based on deep-learning-assisted,soft epidermal electronics.The epidermal electronics that can fully conform on faces enable high-fidelity biosignal acquisition without hindering spontaneous facial expressions,releasing the constraint of movement,space,and light.The deep learning method can significantly enhance the recognition accuracy of facial expression types and intensities based on a small sample.The proposed wearable FER system is superior for wide applicability and high accuracy.The FER system is suitable for the individual and shows essential robustness to different light,occlusion,and various face poses.It is totally different from but complementary to the computer vision technology that is merely suitable for simultaneous FER of multiple individuals in a specific place.This wearable FER system is successfully applied to human-avatar emotion interaction and verbal communication disambiguation in a real-life environment,enabling promising human-computer interaction applications.