Being abundant and active,Fe_(2)O_(3) is suitable for selective oxidation of H_(2)S.However,its practical application is limited due to the poor sulfur selectivity and rapid deactivation.Herein,we report a facile temp...Being abundant and active,Fe_(2)O_(3) is suitable for selective oxidation of H_(2)S.However,its practical application is limited due to the poor sulfur selectivity and rapid deactivation.Herein,we report a facile template-free hydrothermal method to fabricate porousα-Fe_(2)O_(3)/SnO_(2) composites with hierarchical nanoflower that can obviously improve the catalytic performance of Fe_(2)O_(3).It was disclosed that the synergistic effect betweenα-Fe_(2)O_(3) and SnO_(2) promotes the physico-chemical properties ofα-Fe_(2)O_(3)/SnO_(2) composites.Specifically,the electron transfer between the Fe^(2+)/Fe^(3+)and Sn^(2+)/Sn^(4+)redox couples enhances the reducibility ofα-Fe_(2)O_(3)/SnO_(2) composites.The number of oxygen vacancies is improved when the Fe cations incorporate into SnO_(2) structure,which facilitates the adsorption and activation of oxygen species.Additionally,the porous structure improves the accessibility of H_(2) S to active sites.Among the composites,Fe1 Sn1 exhibits complete H_(2) S conversion with 100%sulfur selectivity at 220℃,better than those of pureα-Fe_(2)O_(3) and SnO2.Moreover,Fe1 Sn1 catalyst shows high stability and water resistance.展开更多
基金supported by the National Natural Science Fund for Distinguished Young Scholars of China(No.21825801)National Natural Science Foundation of China(Nos.21677036,21878052 and 21773030)。
文摘Being abundant and active,Fe_(2)O_(3) is suitable for selective oxidation of H_(2)S.However,its practical application is limited due to the poor sulfur selectivity and rapid deactivation.Herein,we report a facile template-free hydrothermal method to fabricate porousα-Fe_(2)O_(3)/SnO_(2) composites with hierarchical nanoflower that can obviously improve the catalytic performance of Fe_(2)O_(3).It was disclosed that the synergistic effect betweenα-Fe_(2)O_(3) and SnO_(2) promotes the physico-chemical properties ofα-Fe_(2)O_(3)/SnO_(2) composites.Specifically,the electron transfer between the Fe^(2+)/Fe^(3+)and Sn^(2+)/Sn^(4+)redox couples enhances the reducibility ofα-Fe_(2)O_(3)/SnO_(2) composites.The number of oxygen vacancies is improved when the Fe cations incorporate into SnO_(2) structure,which facilitates the adsorption and activation of oxygen species.Additionally,the porous structure improves the accessibility of H_(2) S to active sites.Among the composites,Fe1 Sn1 exhibits complete H_(2) S conversion with 100%sulfur selectivity at 220℃,better than those of pureα-Fe_(2)O_(3) and SnO2.Moreover,Fe1 Sn1 catalyst shows high stability and water resistance.