The Ni2P/MgAlO catalysts with different MgO/Al2O3 ratios were prepared by the phosphidation of corresponding Ni/MgAlO catalysts with triphenylphosphine in liquid phase. It was found that the MgO/Al2O3 ratio affected t...The Ni2P/MgAlO catalysts with different MgO/Al2O3 ratios were prepared by the phosphidation of corresponding Ni/MgAlO catalysts with triphenylphosphine in liquid phase. It was found that the MgO/Al2O3 ratio affected the Ni2P/MgAlO catalysts significantly. The Ni2P/MgAlO catalyst with the MgO/Al2O3 ratio of 3 (w/w) exhibited the highly dispersed Ni2P particles (similar to 9 nm) with the highest CO uptake (344 mu mol/g) and thus the highest activities for the hydrotreating reactions. However, based on the CO uptakes on the used catalysts, the TOF values for the hydrodesulphurization of dibenzothiophene as well as those for the hydrogenation of tetralin on all the Ni2P/MgAlO catalysts were respectively similar, indicating that the MgO/Al2O3 ratio did not affect the intrinsic activities of Ni2P supported on the MgAlO support for the hydrotreating reactions. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.展开更多
基金Financial supports from NSFC(21273105)MSTC(2013AA031703)+1 种基金NSFJC(BK20140596)the fundamental research funds for central universities
文摘The Ni2P/MgAlO catalysts with different MgO/Al2O3 ratios were prepared by the phosphidation of corresponding Ni/MgAlO catalysts with triphenylphosphine in liquid phase. It was found that the MgO/Al2O3 ratio affected the Ni2P/MgAlO catalysts significantly. The Ni2P/MgAlO catalyst with the MgO/Al2O3 ratio of 3 (w/w) exhibited the highly dispersed Ni2P particles (similar to 9 nm) with the highest CO uptake (344 mu mol/g) and thus the highest activities for the hydrotreating reactions. However, based on the CO uptakes on the used catalysts, the TOF values for the hydrodesulphurization of dibenzothiophene as well as those for the hydrogenation of tetralin on all the Ni2P/MgAlO catalysts were respectively similar, indicating that the MgO/Al2O3 ratio did not affect the intrinsic activities of Ni2P supported on the MgAlO support for the hydrotreating reactions. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.