The tip-clearance flow in a pump-jet propulsor exerts great impacts on the fluctuating pressures and resultant unsteady forces,which are important sources of structural vibrations and radiated noise underwater.The bla...The tip-clearance flow in a pump-jet propulsor exerts great impacts on the fluctuating pressures and resultant unsteady forces,which are important sources of structural vibrations and radiated noise underwater.The blade geometry close to the tip is an important factor determining the vortex strength in the tip-clearance flow.In the open-water condition,the effects of raking the rotor tips on the duct-surface fluctuating pressures and the resultant unsteady forces acting on different components of the propulsor are investigated via physical model experiments and the numerical solution of Reynolds-averaged Navier-Stokes(RANS)equations coupled with the SST k-ωturbulence model.The measured and simulated results of hydrodynamic pressures are consistent to each other,and the simulated flows help better understand why the fluctuating pressures change with the tip geometry.The strong fluctuations of duct-surface pressures are caused by intensive tip separation vortices.The duct-surface pressure fluctuations are effectively reduced by using the rake distribution near the tip towards blade back side and,for the combination of the five-bladed rotor and the seven-bladed stator,the resultant unsteady horizontal(and vertical)forces acting on the duct and stator are also reduced;while increasing rake leads to negative effect on pressure fluctuations and unsteady horizontal(and vertical)forces acting on all the components of the propulsor.展开更多
Data sharing and searching are important functionalities in cloud storage. In this paper, we show how to securely and flexibly search and share cloud data among a group of users without a group manager. We formalize a...Data sharing and searching are important functionalities in cloud storage. In this paper, we show how to securely and flexibly search and share cloud data among a group of users without a group manager. We formalize a novel cryptosystem: secure channel free searchable encryption in a peer-to-peer group, which features with the secure cloud data sharing and searching for group members in an identity-based setting. Our scheme allows group members to join or leave the group dynamically. We present two schemes: basic scheme and enhanced scheme. We formally prove that our basic scheme achieves consistency and indistinguishability against the chosen keyword and ciphertext attack and the outsider's keyword guessing attack, respectively. An enhanced scheme is also proposed to achieve forward secrecy, which allows to revoke user search right over the former shared data.展开更多
The interaction between ship and surrounding fluids generates the water-air-bubble mixed flow laden with numerous droplets and bubbles.The water-air-bubble mixed flow is a complex multi-phase flow phenomenon,which inv...The interaction between ship and surrounding fluids generates the water-air-bubble mixed flow laden with numerous droplets and bubbles.The water-air-bubble mixed flow is a complex multi-phase flow phenomenon,which involves intense air-water mixture,complex evolution of interface shape,interactions between multi-scale flow structures and strong turbulent fluctuations.Based on the field observations at sea,a large range of white water-air-bubble flow exists widely around a large-scale sailing ship,and directly affects the hydrodynamic performance of ship from various aspects.This paper reviews the research progress of water-air-bubble mixed flow around a ship.Current knowledge about the formation and evolution mechanism are introduced firstly.Then,the effects of the water-air-bubble mixed flow on ship performance are further reviewed,the main concerns are ship resistance,propulsion performance,slamming and maneuverability.Finally,the future research prospects are summarized.展开更多
It is universally acknowledged by network security experts that proactive peer-to-peer (P2P) worms may soon en-gender serious threats to the Internet infrastructures. These latent threats stimulate activities of model...It is universally acknowledged by network security experts that proactive peer-to-peer (P2P) worms may soon en-gender serious threats to the Internet infrastructures. These latent threats stimulate activities of modeling and analysis of the proactive P2P worm propagation. Based on the classical two-factor model,in this paper,we propose a novel proactive worm propagation model in unstructured P2P networks (called the four-factor model) by considering four factors:(1) network topology,(2) countermeasures taken by Internet service providers (ISPs) and users,(3) configuration diversity of nodes in the P2P network,and (4) attack and defense strategies. Simulations and experiments show that proactive P2P worms can be slowed down by two ways:improvement of the configuration diversity of the P2P network and using powerful rules to reinforce the most connected nodes from being compromised. The four-factor model provides a better description and prediction of the proactive P2P worm propagation.展开更多
Most hydrodynamic problems in ship and ocean engineering are complex and highly coupled.Under the trend of intelligent and digital design for ships and ocean engineering structures,comprehensive performance evaluation...Most hydrodynamic problems in ship and ocean engineering are complex and highly coupled.Under the trend of intelligent and digital design for ships and ocean engineering structures,comprehensive performance evaluation and optimization are of vital importance during design.In this process,various coupling effects need to be accurately predicted.With the significant progress of computational fluid dynamics(CFD),many advanced numerical models were proposed to simulate the complex coupling hydrodynamic problems in ship and ocean engineering field.In this paper,five key coupling hydrodynamic problems are introduced,which are hull-propeller-rudder coupling,wave-floating structure coupling,aerodynamic-hydrodynamic coupling,fluid structure coupling and fluid-noise coupling,respectively.The paper focuses on the numerical simulation techniques corresponding to each coupling problem,including the theories and the applications.Future directions and conclusions are provided finally.展开更多
Air-layer drag reduction (ALDR) technology for ship energy saving is getting more and more attention in recent years because of the outstanding drag reduction effect. In order to promote practical application, it is n...Air-layer drag reduction (ALDR) technology for ship energy saving is getting more and more attention in recent years because of the outstanding drag reduction effect. In order to promote practical application, it is necessary to fully understand the two phase flow characteristics of the air layer. Recent experimental studies have shown that the surface of the air layer presents wave pattern, which has an important influence on its damage risk. However, it is difficult to measure the wave pattern quantificationally due to the interference of equipment. The main goal of the present paper is to investigate the wave pattern characteristic of air layer in cavity using numerical simulation method. On this basis, the effect of flow and geometric influence factors are discussed to understand the key control conditions. A computational fluid dynamics (CFD) numerical method based on Reynolds averaged Navier-Stokes (RANS) equations and volume of fluid (VOF) interface capturing method is established, and has been successfully applied in the simulation of air layer wave pattern. Both 2-D and 3-D simulations are carried out, aiming at analyzing air-water interface flow and vortex flow directly. Based on the simulation results, several important conclusions about the mechanism of air layer wave pattern can be obtained. Firstly, it is found to be an inherent characteristic that the wave height of the upstream air layer is higher than that of the downstream. The extremely high wave peak is easy to contact with the flat plate, leading to the breakup of air layer and a “central blank area” phenomenon. With the help of flow analysis, it is found that this characteristic is mainly caused by the strong counterclockwise vortex behind the bow wedge block. Secondly, the air layer stability is reduced with the increase of water flow velocity by affecting the wave height. There is a saturation point of air flow rate to reach maximum thickness of air layer. Thirdly, cavity configuration has obvious influence on air layer stability by influencing vortex flow field. The increase of cavity depth and width can aggravate the unsteady and nonlinear characteristics of air layer. Finally, comprehensive design criteria are concluded from the view of geometrical configuration and flow conditions. A cavity with the moderate depth and width can avoid the upstream damage of air layer. Longitudinal position of air nozzles should be set within the low pressure zone behind the wedge block for stable air layer formation.展开更多
基金supported by the National Key Project of China for Strengthening Fundamental Research(Grant No.2019-JCJQ-ZD-016-00).
文摘The tip-clearance flow in a pump-jet propulsor exerts great impacts on the fluctuating pressures and resultant unsteady forces,which are important sources of structural vibrations and radiated noise underwater.The blade geometry close to the tip is an important factor determining the vortex strength in the tip-clearance flow.In the open-water condition,the effects of raking the rotor tips on the duct-surface fluctuating pressures and the resultant unsteady forces acting on different components of the propulsor are investigated via physical model experiments and the numerical solution of Reynolds-averaged Navier-Stokes(RANS)equations coupled with the SST k-ωturbulence model.The measured and simulated results of hydrodynamic pressures are consistent to each other,and the simulated flows help better understand why the fluctuating pressures change with the tip geometry.The strong fluctuations of duct-surface pressures are caused by intensive tip separation vortices.The duct-surface pressure fluctuations are effectively reduced by using the rake distribution near the tip towards blade back side and,for the combination of the five-bladed rotor and the seven-bladed stator,the resultant unsteady horizontal(and vertical)forces acting on the duct and stator are also reduced;while increasing rake leads to negative effect on pressure fluctuations and unsteady horizontal(and vertical)forces acting on all the components of the propulsor.
基金This work was supported by the National Natural Science Foundation of China under Grant Nos. 61502086 and 61572115.
文摘Data sharing and searching are important functionalities in cloud storage. In this paper, we show how to securely and flexibly search and share cloud data among a group of users without a group manager. We formalize a novel cryptosystem: secure channel free searchable encryption in a peer-to-peer group, which features with the secure cloud data sharing and searching for group members in an identity-based setting. Our scheme allows group members to join or leave the group dynamically. We present two schemes: basic scheme and enhanced scheme. We formally prove that our basic scheme achieves consistency and indistinguishability against the chosen keyword and ciphertext attack and the outsider's keyword guessing attack, respectively. An enhanced scheme is also proposed to achieve forward secrecy, which allows to revoke user search right over the former shared data.
基金supported by the National Natural Science Foundation of China(Grant Nos.52131102,51879159)the National Key Research,Development Program of China(Grant No.2019YFB1704200).
文摘The interaction between ship and surrounding fluids generates the water-air-bubble mixed flow laden with numerous droplets and bubbles.The water-air-bubble mixed flow is a complex multi-phase flow phenomenon,which involves intense air-water mixture,complex evolution of interface shape,interactions between multi-scale flow structures and strong turbulent fluctuations.Based on the field observations at sea,a large range of white water-air-bubble flow exists widely around a large-scale sailing ship,and directly affects the hydrodynamic performance of ship from various aspects.This paper reviews the research progress of water-air-bubble mixed flow around a ship.Current knowledge about the formation and evolution mechanism are introduced firstly.Then,the effects of the water-air-bubble mixed flow on ship performance are further reviewed,the main concerns are ship resistance,propulsion performance,slamming and maneuverability.Finally,the future research prospects are summarized.
基金Project (No. 09511501600) partially supported by the Science and Technology Commission of Shanghai Municipality, China
文摘It is universally acknowledged by network security experts that proactive peer-to-peer (P2P) worms may soon en-gender serious threats to the Internet infrastructures. These latent threats stimulate activities of modeling and analysis of the proactive P2P worm propagation. Based on the classical two-factor model,in this paper,we propose a novel proactive worm propagation model in unstructured P2P networks (called the four-factor model) by considering four factors:(1) network topology,(2) countermeasures taken by Internet service providers (ISPs) and users,(3) configuration diversity of nodes in the P2P network,and (4) attack and defense strategies. Simulations and experiments show that proactive P2P worms can be slowed down by two ways:improvement of the configuration diversity of the P2P network and using powerful rules to reinforce the most connected nodes from being compromised. The four-factor model provides a better description and prediction of the proactive P2P worm propagation.
基金Project supported by the National Natural Science Foundation of China(Grant No.51879159,51809169 and 51909160)the National Key Research and Development Program of China(Grant Nos.2019YFB1704200,2019YFC0312400)+2 种基金This work was supported by the Chang Jiang Scholars Program(Grant No.T2014099)the Shanghai Excellent Academic Leaders Program(Grant No.17XD1402300)the Innovative Special Project of Numerical Tank of Ministry of Industry and Information Technology of China(2016-23/09).
文摘Most hydrodynamic problems in ship and ocean engineering are complex and highly coupled.Under the trend of intelligent and digital design for ships and ocean engineering structures,comprehensive performance evaluation and optimization are of vital importance during design.In this process,various coupling effects need to be accurately predicted.With the significant progress of computational fluid dynamics(CFD),many advanced numerical models were proposed to simulate the complex coupling hydrodynamic problems in ship and ocean engineering field.In this paper,five key coupling hydrodynamic problems are introduced,which are hull-propeller-rudder coupling,wave-floating structure coupling,aerodynamic-hydrodynamic coupling,fluid structure coupling and fluid-noise coupling,respectively.The paper focuses on the numerical simulation techniques corresponding to each coupling problem,including the theories and the applications.Future directions and conclusions are provided finally.
基金Project supported by the Ministry of Industry and Information Technology of China(Project No.CB01N20-05).
文摘Air-layer drag reduction (ALDR) technology for ship energy saving is getting more and more attention in recent years because of the outstanding drag reduction effect. In order to promote practical application, it is necessary to fully understand the two phase flow characteristics of the air layer. Recent experimental studies have shown that the surface of the air layer presents wave pattern, which has an important influence on its damage risk. However, it is difficult to measure the wave pattern quantificationally due to the interference of equipment. The main goal of the present paper is to investigate the wave pattern characteristic of air layer in cavity using numerical simulation method. On this basis, the effect of flow and geometric influence factors are discussed to understand the key control conditions. A computational fluid dynamics (CFD) numerical method based on Reynolds averaged Navier-Stokes (RANS) equations and volume of fluid (VOF) interface capturing method is established, and has been successfully applied in the simulation of air layer wave pattern. Both 2-D and 3-D simulations are carried out, aiming at analyzing air-water interface flow and vortex flow directly. Based on the simulation results, several important conclusions about the mechanism of air layer wave pattern can be obtained. Firstly, it is found to be an inherent characteristic that the wave height of the upstream air layer is higher than that of the downstream. The extremely high wave peak is easy to contact with the flat plate, leading to the breakup of air layer and a “central blank area” phenomenon. With the help of flow analysis, it is found that this characteristic is mainly caused by the strong counterclockwise vortex behind the bow wedge block. Secondly, the air layer stability is reduced with the increase of water flow velocity by affecting the wave height. There is a saturation point of air flow rate to reach maximum thickness of air layer. Thirdly, cavity configuration has obvious influence on air layer stability by influencing vortex flow field. The increase of cavity depth and width can aggravate the unsteady and nonlinear characteristics of air layer. Finally, comprehensive design criteria are concluded from the view of geometrical configuration and flow conditions. A cavity with the moderate depth and width can avoid the upstream damage of air layer. Longitudinal position of air nozzles should be set within the low pressure zone behind the wedge block for stable air layer formation.