In section 3.6,page 643,right column,lines 8–9 from bottom,“dsorption/regeneration of the capsules is performed for five cycles,”where“five”should be“six.”
Smart membranes with tunable permeability and selectivity have drawn widespread attention because of their unique biomimetic characteristics.Constructed by incorporating various stimuli-responsive materials into membr...Smart membranes with tunable permeability and selectivity have drawn widespread attention because of their unique biomimetic characteristics.Constructed by incorporating various stimuli-responsive materials into membrane substrates,smart membranes could self-adjust their physical/chemical properties(such as pore size and surface properties)in response to environmental signals such as temperature,pH,light,magnetic field,electric field,redox and specific ions/molecules.Such smart membranes show great prospects in biomedical applications ranging from controlled drug release to bioseparation and tissue engineering.In this review,three controlled release models realized by different designed smart membranes are emphatically introduced,and then smart membranes for biological separation and controlled cell culture are introduced and discussed respectively.At last,the existing challenges of smart membranes for biomedical applications are briefly summarized,and future research topics are suggested.展开更多
A novel type of reduced graphene oxide(rGO)modified melamine sponges(rGS)filling with paraffin(rGS-pf)is developed for efficient solar-thermal conversion and heat management.The microstructures,filling and holding cap...A novel type of reduced graphene oxide(rGO)modified melamine sponges(rGS)filling with paraffin(rGS-pf)is developed for efficient solar-thermal conversion and heat management.The microstructures,filling and holding capacity of paraffin in porous rGS,solar-thermal energy conversion and energy harvesting efficiency of the prepared rGS-pf have been investigated systematically.The content of rGO nanosheets coated on the skeletons of rGS-pf is only 0.11%,while the loading content of paraffin in the rGS-pf is as high as 97.53%.Based on the solar-thermal conversion property of rGO nanosheets in the rGS-pf and the heat storage ability of paraffin in the rGS-pf,the proposed rGS-pf provides excellent performance for heat management.The efficiency of solar-thermal conversion could reach up to 92.5%.The thermo-regulation provided by the proposed rGS-pf is real-time,repeatable and long-term stable.The results in this study provide valuable guidance for developing functional materials for efficient solarthermal conversion and heat management.展开更多
A novel method has been successfully developed for the facile and efficient removal of organic micro-pollutants(OMP)from water based on novel functional capsules encapsulating molecular-recognizable nanogels.The funct...A novel method has been successfully developed for the facile and efficient removal of organic micro-pollutants(OMP)from water based on novel functional capsules encapsulating molecular-recognizable nanogels.The functional capsules are composed of ultrathin calcium alginate(Ca-Alg)hydrogel shells as semipermeable membranes and encapsulated poly(N-isopropylacrylamide-co-acrylic acid-g-mono-(6-ethanediamine-6-deoxy)-β-cyclodextrin)(PNCD)nanogels withβ-cyclodextrin(CD)moieties as OMP capturers.The semipermeable membranes of the capsules enable the free transfer of OMP and water molecules across the capsule shells,but confine the encapsulated PNCD nanogels within the capsules.Bisphenol A(BPA),an endocrine-disrupting chemical that is released from many plastic water containers,was chosen as a model OMP molecule in this study.Based on the host–vip recognition complexation,the CD moieties in the PNCD nanogels can efficiently capture BPA molecules.Thus,the facile and efficient removal of BPA from water can be achieved by immersing the proposed functional capsules into BPA-containing aqueous solutions and then simply removing them,which is easily done due to the capsules’characteristically large size of up to several millimeters.The kinetics of adsorption of BPA molecules by the capsules is well described by a pseudo-second-order kinetic model,and the isothermal adsorption thermodynamics align well with the Freundlich and Langmuir isothermal adsorption models.The regeneration of capsules can be achieved simply by washing them with water at temperatures above the volume phase transition temperature of the PNCD nanogels.Thus,the proposed functional capsules encapsulating molecular-recognizable nanogels provide a novel strategy for the facile and efficient removal of OMP from water.展开更多
A novel type of functional graphene oxide nanosheets(GNs)modified with b-cyclodextrins(b-CDs)have been developed by coating dopamine-functionalized cyclodextrin(DACD)molecules on GNs for removing Bisphenol A(BPA)molec...A novel type of functional graphene oxide nanosheets(GNs)modified with b-cyclodextrins(b-CDs)have been developed by coating dopamine-functionalized cyclodextrin(DACD)molecules on GNs for removing Bisphenol A(BPA)molecules from water.The DACD molecules with both b-CD groups for achieving adsorption property and dopamine(DA)groups for achieving adhesion property are synthesized by grafting DA onto carboxymethyl-b-cyclodextrin(CmbCD).The proposed DACD molecules can be firmly coated on the surfaces of various inorganic and organic substrates.Due to the large specific surface area of GNs,DACD-coated GNs(DACD@GNs)are proposed for efficient adsorption separation of BPA molecules from water.Due to the host-gust complexation between the BPA molecules in water and b-CDs on DACD@GNs,the fabricated DACD@GNs exhibit excellent adsorption performances.The adsorption kinetics can be explained via the pseudo-second-order model effectively.The experimental adsorption capacity of DACD@GNs is 11.29 mg·g^(-1) for BPA.Furthermore,after the adsorption process,the DACD@GNs can be easily separated from aqueous solutions via vacuum filtration with porous membranes,and then regenerated by simply washing with ethanol.The proposed strategy in this study can be used for effectively functionalizing the surfaces of various substrates with functional b-CDs,which is highly promising in applications in the field of adsorption separations,especially water treatments.展开更多
Soft strain sensors that can transduce stretch stimuli into electrical readouts are promising as sustainable wearable electronics.However,most strain sensors cannot achieve highly-sensitive and wide-range detection of...Soft strain sensors that can transduce stretch stimuli into electrical readouts are promising as sustainable wearable electronics.However,most strain sensors cannot achieve highly-sensitive and wide-range detection of ultralow and high strains.Inspired by bamboo structures,anti-freezing microfibers made of conductive poly(vinyl alcohol)hydrogel with poly(3,4-ethylenedioxythiphene)-poly(styrenesulfonate)are developed via continuous microfluidic spinning.The microfibers provide unique bamboo-like structures with enhanced local stress to improve both their length change and resistance change upon stretching for efficient signal conversion.The microfibers allow highlysensitive(detection limit:0.05%strain)and wide-range(0%-400%strain)detection of ultralow and high strains,as well as features of good stretchability(485%strain)and anti-freezing property(freezing temperature:-41.1°C),fast response(200 ms),and good repeatability.The experimental results,together with theoretical foundation analysis and finite element analysis,prove their enhanced length and resistance changes upon stretching for efficient signal conversion.By integrating microfluidic spinning with 3D-printing technique,the textiles of the microfibers can be flexibly constructed.The microfibers and their 3D-printed textiles enable highperformance monitoring of human motions including finger bending and throat vibrating during phonation.This work provides an efficient and general strategy for developing advanced conductive hydrogel microfibers as highperformance wearable strain sensors.展开更多
The hierarchical design of mesoscale structures in droplet templates determines the structure and functionality of the resultant microparticles.In this review,we summarize recent progress on the control of microfluidi...The hierarchical design of mesoscale structures in droplet templates determines the structure and functionality of the resultant microparticles.In this review,we summarize recent progress on the control of microfluidic emulsion templates for the synthesis of polymeric microparticles with desired functionality and internal structure.We introduce strategies for controlling the morphology and interfacial stability of emulsion templates.These strategies are based on manipulation of the mesoscale structure of amphiphilic molecules and nanoparticles at emulsion-droplet interfaces.We also discuss strategies for controlling the mesoscale structure of microparticles,which involve manipulating the interfacial mass-transfer and chemical reactions during template synthesis.We provide insight on the use of these strategies for the rational design and fabrication of polymeric microparticles with predictable internal structures and functionality at the single-particle level.展开更多
Lead(Ⅱ)(Pb2+)ions are toxic heavy metal ions that can accumulate in the human body through water and cause severe health problems,including neurotoxicity,nephrotoxicity,hematological toxicity and even genotoxicity ef...Lead(Ⅱ)(Pb2+)ions are toxic heavy metal ions that can accumulate in the human body through water and cause severe health problems,including neurotoxicity,nephrotoxicity,hematological toxicity and even genotoxicity effects.To remove Pb2+selectively and effectively from aqueous solutions,we develop a novel type of Pb2+-recognizable microgels with excellent adsorption capacity to Pb2+,which are fabri-cated from 4-acrylamidobenzo-18-crown-6(B18C6Am)and N-isopropylmethacrylamide(NIPMAM)monomers by precipitation copolymerization method.The prepared poly(N-isopropylmethacrylamide-co-4-acrylamidobenzo-18-crown-6)(PNMB)microgels exhibit expanded structures,because the electron-donating methyl groups atα-carbon could descend the polarity of C=O in the NIPMAM monomers and thus weaken the polymer segment…segment interactions.The expanded structures of PNMB microgels are beneficial for adsorption of Pb2+due to the low steric hindrance in the polymeric networks.The Pb2+adsorption isotherms of PNMB microgels are consistent with the Langmuir model for monolayer adsorption.The results indicate that the prepared Pb2+-recognizable PNMB microgels are highly promising for the selective removal of lead(Ⅱ)ions from aqueous solutions.展开更多
文摘In section 3.6,page 643,right column,lines 8–9 from bottom,“dsorption/regeneration of the capsules is performed for five cycles,”where“five”should be“six.”
基金support from the National Natural Science Foundation of China(21991101,22078202)。
文摘Smart membranes with tunable permeability and selectivity have drawn widespread attention because of their unique biomimetic characteristics.Constructed by incorporating various stimuli-responsive materials into membrane substrates,smart membranes could self-adjust their physical/chemical properties(such as pore size and surface properties)in response to environmental signals such as temperature,pH,light,magnetic field,electric field,redox and specific ions/molecules.Such smart membranes show great prospects in biomedical applications ranging from controlled drug release to bioseparation and tissue engineering.In this review,three controlled release models realized by different designed smart membranes are emphatically introduced,and then smart membranes for biological separation and controlled cell culture are introduced and discussed respectively.At last,the existing challenges of smart membranes for biomedical applications are briefly summarized,and future research topics are suggested.
基金support from the National Natural Science Foundation of China(22022810)the Program for Changjiang Scholars and Innovative Research Team in University(IRT15R48)Sichuan University(2020SCUNG112).
文摘A novel type of reduced graphene oxide(rGO)modified melamine sponges(rGS)filling with paraffin(rGS-pf)is developed for efficient solar-thermal conversion and heat management.The microstructures,filling and holding capacity of paraffin in porous rGS,solar-thermal energy conversion and energy harvesting efficiency of the prepared rGS-pf have been investigated systematically.The content of rGO nanosheets coated on the skeletons of rGS-pf is only 0.11%,while the loading content of paraffin in the rGS-pf is as high as 97.53%.Based on the solar-thermal conversion property of rGO nanosheets in the rGS-pf and the heat storage ability of paraffin in the rGS-pf,the proposed rGS-pf provides excellent performance for heat management.The efficiency of solar-thermal conversion could reach up to 92.5%.The thermo-regulation provided by the proposed rGS-pf is real-time,repeatable and long-term stable.The results in this study provide valuable guidance for developing functional materials for efficient solarthermal conversion and heat management.
基金The authors gratefully acknowledge support from the National Natural Science Foundation of China(21991101).
文摘A novel method has been successfully developed for the facile and efficient removal of organic micro-pollutants(OMP)from water based on novel functional capsules encapsulating molecular-recognizable nanogels.The functional capsules are composed of ultrathin calcium alginate(Ca-Alg)hydrogel shells as semipermeable membranes and encapsulated poly(N-isopropylacrylamide-co-acrylic acid-g-mono-(6-ethanediamine-6-deoxy)-β-cyclodextrin)(PNCD)nanogels withβ-cyclodextrin(CD)moieties as OMP capturers.The semipermeable membranes of the capsules enable the free transfer of OMP and water molecules across the capsule shells,but confine the encapsulated PNCD nanogels within the capsules.Bisphenol A(BPA),an endocrine-disrupting chemical that is released from many plastic water containers,was chosen as a model OMP molecule in this study.Based on the host–vip recognition complexation,the CD moieties in the PNCD nanogels can efficiently capture BPA molecules.Thus,the facile and efficient removal of BPA from water can be achieved by immersing the proposed functional capsules into BPA-containing aqueous solutions and then simply removing them,which is easily done due to the capsules’characteristically large size of up to several millimeters.The kinetics of adsorption of BPA molecules by the capsules is well described by a pseudo-second-order kinetic model,and the isothermal adsorption thermodynamics align well with the Freundlich and Langmuir isothermal adsorption models.The regeneration of capsules can be achieved simply by washing them with water at temperatures above the volume phase transition temperature of the PNCD nanogels.Thus,the proposed functional capsules encapsulating molecular-recognizable nanogels provide a novel strategy for the facile and efficient removal of OMP from water.
基金the National Natural Science Foundation of China(21490582).
文摘A novel type of functional graphene oxide nanosheets(GNs)modified with b-cyclodextrins(b-CDs)have been developed by coating dopamine-functionalized cyclodextrin(DACD)molecules on GNs for removing Bisphenol A(BPA)molecules from water.The DACD molecules with both b-CD groups for achieving adsorption property and dopamine(DA)groups for achieving adhesion property are synthesized by grafting DA onto carboxymethyl-b-cyclodextrin(CmbCD).The proposed DACD molecules can be firmly coated on the surfaces of various inorganic and organic substrates.Due to the large specific surface area of GNs,DACD-coated GNs(DACD@GNs)are proposed for efficient adsorption separation of BPA molecules from water.Due to the host-gust complexation between the BPA molecules in water and b-CDs on DACD@GNs,the fabricated DACD@GNs exhibit excellent adsorption performances.The adsorption kinetics can be explained via the pseudo-second-order model effectively.The experimental adsorption capacity of DACD@GNs is 11.29 mg·g^(-1) for BPA.Furthermore,after the adsorption process,the DACD@GNs can be easily separated from aqueous solutions via vacuum filtration with porous membranes,and then regenerated by simply washing with ethanol.The proposed strategy in this study can be used for effectively functionalizing the surfaces of various substrates with functional b-CDs,which is highly promising in applications in the field of adsorption separations,especially water treatments.
基金support from the National Natural Science Foundation of China(Nos.22278281 and 21991101)Sichuan University(2020SCUNG112)
文摘Soft strain sensors that can transduce stretch stimuli into electrical readouts are promising as sustainable wearable electronics.However,most strain sensors cannot achieve highly-sensitive and wide-range detection of ultralow and high strains.Inspired by bamboo structures,anti-freezing microfibers made of conductive poly(vinyl alcohol)hydrogel with poly(3,4-ethylenedioxythiphene)-poly(styrenesulfonate)are developed via continuous microfluidic spinning.The microfibers provide unique bamboo-like structures with enhanced local stress to improve both their length change and resistance change upon stretching for efficient signal conversion.The microfibers allow highlysensitive(detection limit:0.05%strain)and wide-range(0%-400%strain)detection of ultralow and high strains,as well as features of good stretchability(485%strain)and anti-freezing property(freezing temperature:-41.1°C),fast response(200 ms),and good repeatability.The experimental results,together with theoretical foundation analysis and finite element analysis,prove their enhanced length and resistance changes upon stretching for efficient signal conversion.By integrating microfluidic spinning with 3D-printing technique,the textiles of the microfibers can be flexibly constructed.The microfibers and their 3D-printed textiles enable highperformance monitoring of human motions including finger bending and throat vibrating during phonation.This work provides an efficient and general strategy for developing advanced conductive hydrogel microfibers as highperformance wearable strain sensors.
基金The authors gratefully acknowledge support from the National Natural Science Foundation of China(91434202)the Program for Changjiang Scholars and Innovative Research Team in University(IRT15R48)State Key Laboratory of Polymer Materials Engi-neering(sklpme2014-1-01).
文摘The hierarchical design of mesoscale structures in droplet templates determines the structure and functionality of the resultant microparticles.In this review,we summarize recent progress on the control of microfluidic emulsion templates for the synthesis of polymeric microparticles with desired functionality and internal structure.We introduce strategies for controlling the morphology and interfacial stability of emulsion templates.These strategies are based on manipulation of the mesoscale structure of amphiphilic molecules and nanoparticles at emulsion-droplet interfaces.We also discuss strategies for controlling the mesoscale structure of microparticles,which involve manipulating the interfacial mass-transfer and chemical reactions during template synthesis.We provide insight on the use of these strategies for the rational design and fabrication of polymeric microparticles with predictable internal structures and functionality at the single-particle level.
基金support from the National Natural Science Foundation of China(grant Nos.21991101,22022810).
文摘Lead(Ⅱ)(Pb2+)ions are toxic heavy metal ions that can accumulate in the human body through water and cause severe health problems,including neurotoxicity,nephrotoxicity,hematological toxicity and even genotoxicity effects.To remove Pb2+selectively and effectively from aqueous solutions,we develop a novel type of Pb2+-recognizable microgels with excellent adsorption capacity to Pb2+,which are fabri-cated from 4-acrylamidobenzo-18-crown-6(B18C6Am)and N-isopropylmethacrylamide(NIPMAM)monomers by precipitation copolymerization method.The prepared poly(N-isopropylmethacrylamide-co-4-acrylamidobenzo-18-crown-6)(PNMB)microgels exhibit expanded structures,because the electron-donating methyl groups atα-carbon could descend the polarity of C=O in the NIPMAM monomers and thus weaken the polymer segment…segment interactions.The expanded structures of PNMB microgels are beneficial for adsorption of Pb2+due to the low steric hindrance in the polymeric networks.The Pb2+adsorption isotherms of PNMB microgels are consistent with the Langmuir model for monolayer adsorption.The results indicate that the prepared Pb2+-recognizable PNMB microgels are highly promising for the selective removal of lead(Ⅱ)ions from aqueous solutions.