Using the Widdel medium with extracted microcystin(MC)as the sole carbon and nitrogen sources,the MC-degrading bacteria community S_6 was enriched from the sediment of Litopenaeus vannamei pond,and a novel MC-degradin...Using the Widdel medium with extracted microcystin(MC)as the sole carbon and nitrogen sources,the MC-degrading bacteria community S_6 was enriched from the sediment of Litopenaeus vannamei pond,and a novel MC-degrading bacteria strain was isolated from S_6.According to 16S rDNA gene sequence and biochemical characteristics,the isolated strain was identified and named Nitratireductor aquimarinus D_(1).Fulvic acid(FA),as a widely existing photosensitizer involved in MC photodegradation,coexists with MC-degrading bacteria in natural water.The synergistic effects of N.aquimarinus D_(1) and FA on MC degradation were evaluated via comparing the degradation rate of MC induced by N.aquimarinus D_(1) and FA alone and in combination under natural light conditions.Compared with the control group,the supplementation of N.aquimarinus D_(1) and FA alone or in combination could significantly increase the degradation rate of MC(P<0.05).In the first 36 h,the degradation effect of FA on MC was better than that of N.aquimarinus D_(1),but the degradation effect was opposite at 48 h.N.aquimarinus D_(1) and FA did not show synergistic effect on MC degradation until 48 h.In the application of N.aquimarinus and FA to degrade MC in aquaculture pond,there might be a time-lag effect in the synergistic degradation.展开更多
Cyanobacteria blooms and their secondary hazards(cyanotoxins,taste and odor compounds)continue to harm the ecological environment of natural and semi-artificially regulated water bodies in the world,thus affecting the...Cyanobacteria blooms and their secondary hazards(cyanotoxins,taste and odor compounds)continue to harm the ecological environment of natural and semi-artificially regulated water bodies in the world,thus affecting the safety of water supply and aquatic product quality.The 8 th National Cyanobacteria Bloom Forum was successfully held on July 14-16,2023,in Tianjin,China.The forum established an academic exchange platform for nearly 300 water ecology experts,reservoir managers,and aquaculture technicians.展开更多
This present work aims to functionalize poly(amidoamine) (PAMAM) dendrimers with various reported adhesive peptides, including Arg-Gly-Asp (RGD), Tyr-lle-Gly-Ser-Arg (YIGSR), and Ile-Lys-Val-Ala-Val (IKVAV) ...This present work aims to functionalize poly(amidoamine) (PAMAM) dendrimers with various reported adhesive peptides, including Arg-Gly-Asp (RGD), Tyr-lle-Gly-Ser-Arg (YIGSR), and Ile-Lys-Val-Ala-Val (IKVAV) for enhancing cell responses. The RGD, YIGSR, or IKVAV functionalized PAMAM coated substrate could promote cell adhesion of bone marrow mesenchymal stem cells (BMSCs) within 1 h after incubation. The neurite differentiation and proliferation of pheochromocytoma (PC12) cells were also significantly enhanced after culturing on the peptide functionalized PAMAM dendrimers for two and foul days. This peptide functionalized PAMAM dendrimers are considered as the potential candidates for various tissue engineering applications.展开更多
基金Supported by the National Natural Science Foundation of China(Nos.32172978,31772857)the Natural Science Foundation of Tianjin(No.22JCYBJC00430)+2 种基金the Tianjin Science and Technology Planning Project(No.22ZYCGSN00050)the Fundamental Research Funds of Tianjin Universities(Nos.2020ZD06,2021KJ110)the Gansu Science and Technology Project(Nos.21CX6NP223,2023ZZ1NC006)。
文摘Using the Widdel medium with extracted microcystin(MC)as the sole carbon and nitrogen sources,the MC-degrading bacteria community S_6 was enriched from the sediment of Litopenaeus vannamei pond,and a novel MC-degrading bacteria strain was isolated from S_6.According to 16S rDNA gene sequence and biochemical characteristics,the isolated strain was identified and named Nitratireductor aquimarinus D_(1).Fulvic acid(FA),as a widely existing photosensitizer involved in MC photodegradation,coexists with MC-degrading bacteria in natural water.The synergistic effects of N.aquimarinus D_(1) and FA on MC degradation were evaluated via comparing the degradation rate of MC induced by N.aquimarinus D_(1) and FA alone and in combination under natural light conditions.Compared with the control group,the supplementation of N.aquimarinus D_(1) and FA alone or in combination could significantly increase the degradation rate of MC(P<0.05).In the first 36 h,the degradation effect of FA on MC was better than that of N.aquimarinus D_(1),but the degradation effect was opposite at 48 h.N.aquimarinus D_(1) and FA did not show synergistic effect on MC degradation until 48 h.In the application of N.aquimarinus and FA to degrade MC in aquaculture pond,there might be a time-lag effect in the synergistic degradation.
基金Supported by the National Natural Science Foundation of China(Nos.32172978,31772857)the Natural Science Foundation of Tianjin(No.22JCYBJC00430)。
文摘Cyanobacteria blooms and their secondary hazards(cyanotoxins,taste and odor compounds)continue to harm the ecological environment of natural and semi-artificially regulated water bodies in the world,thus affecting the safety of water supply and aquatic product quality.The 8 th National Cyanobacteria Bloom Forum was successfully held on July 14-16,2023,in Tianjin,China.The forum established an academic exchange platform for nearly 300 water ecology experts,reservoir managers,and aquaculture technicians.
基金financially supported by the NSF-ECCS 1509760NSF EPSCoR RII Track 1 cooperative agreement awarded to the University of South Carolina (NSF EPSCoR Cooperative Agreement No. EPS-0903795)
文摘This present work aims to functionalize poly(amidoamine) (PAMAM) dendrimers with various reported adhesive peptides, including Arg-Gly-Asp (RGD), Tyr-lle-Gly-Ser-Arg (YIGSR), and Ile-Lys-Val-Ala-Val (IKVAV) for enhancing cell responses. The RGD, YIGSR, or IKVAV functionalized PAMAM coated substrate could promote cell adhesion of bone marrow mesenchymal stem cells (BMSCs) within 1 h after incubation. The neurite differentiation and proliferation of pheochromocytoma (PC12) cells were also significantly enhanced after culturing on the peptide functionalized PAMAM dendrimers for two and foul days. This peptide functionalized PAMAM dendrimers are considered as the potential candidates for various tissue engineering applications.