期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Dissolution-regrowth synthesis of SiO_2 nanoplates and embedment into two carbon shells for enhanced lithium-ion storage
1
作者 Zhijun Yan xiangcun li +3 位作者 Xiaobin Jiang Le Zhang Yan Dai Gaohong He 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2018年第7期1522-1527,共6页
In this work, SiO2 nanoplates with opened macroporous structure on carbon layer (C-mSiO2) have been obtained by dissolving and subsequent ingrowing the outer solid SiO2 layer of the aerosol-based C-SiO2 double-shell... In this work, SiO2 nanoplates with opened macroporous structure on carbon layer (C-mSiO2) have been obtained by dissolving and subsequent ingrowing the outer solid SiO2 layer of the aerosol-based C-SiO2 double-shell hollow spheres. Subsequently, triple-shell C-mSiO2-C hollow spheres were successfully prepared after coating the C- mSiO2 templates by the carbon layer from the carbonization of sucrose. When being applied as the anode material fur lithium-ion batteries, the C-mSiO2-C triple-shell hollow spheres deliver a high capacity of 501 mA. h.g- 1 after 100 cycles at 500 mA.g-1 (based on the total mass of silica and the two carbon shells), which is higher than those of C-mSiO2 (391 mA.h.g 1) spheres with an outer porous SiO2 layer, C-SiO2-C (370 mA-h.g-1) hollow spheres with a middle solid Si02 layer, and C-SiO2 (319.8 mA·h-g-1) spheres with an outer solid SiO2 layer. In addition, the battery still delivers a high capacity of 403 mA· h· g- 1 at a current density of 1000 mA· g- 1 after 400 cycles. The good electrochemical performance can be attributed to the high surface area (246.7 m2·g- 1 ) and pore volume (0.441 cm3· g-1) of the anode materials, as well as the unique structure of the outer and inner carbon layer which not only enhances electrical conductivity, structural stability, but buffers volume change of the intermediate SiO2 layer during repeated charge-discharge processes. Furthermore, the SiO2 nanoplates with opened macroporous structure facilitate the electrolyte transport and electrochemical reaction. 展开更多
关键词 Silica nanoplates Carbon shell MACROPOROUS Lithium-ion battery
在线阅读 下载PDF
Recent developments of anti-plasticized membranes for aggressive CO_(2)separation
2
作者 Yongchao Sun Xiaoyu Wang +4 位作者 xiangcun li Wu Xiao Yan Dai Canghai Ma Gaohong He 《Green Chemical Engineering》 CSCD 2023年第1期1-16,共16页
Membrane separation technology provides an effective alternative to mitigate the massive carbon emission with high carbon capture productivity and efficiency.In the context of operating membranes under high CO_(2)pres... Membrane separation technology provides an effective alternative to mitigate the massive carbon emission with high carbon capture productivity and efficiency.In the context of operating membranes under high CO_(2)pressures allows increased separation productivity and reduced gas compression cost,which,however,often leads to CO_(2)induced plasticization,a key hurdle for current gas separation membranes.In this review,we reviewed the latest development of membranes with anti-plasticization resistance,potentially suited for operation under high CO_(2)feed streams.Specifically,the separation performance of polymeric membranes,inorganic membranes,and mixed matrix membranes under high CO_(2)feed pressures are discussed.Approaches to enhance CO_(2)induced plasticization of those membranes are also summarized.We conclude the recent progress of membranes for high CO_(2)pressures with perspectives and an outlook for future development. 展开更多
关键词 Carbon dioxide High feed pressure PLASTICIZATION Polymeric membranes Inorganic membranes Mixed matrix membranes
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部