EW-type eclipsing binaries(hereafter called EWs)are strong interacting systems in which both component stars usually fill their critical Roche lobes and share a common envelope.Numerous EWs were discovered by several ...EW-type eclipsing binaries(hereafter called EWs)are strong interacting systems in which both component stars usually fill their critical Roche lobes and share a common envelope.Numerous EWs were discovered by several deep photometric surveys and there were about 40 785 EW-type binary systems listed in the international variable star index(VSX)by 2017 March 13.7938 of them were observed with LAMOST by 2016 November 30 and their spectral types were identified.Stellar atmospheric parameters of 5363 EW-type binary stars were determined based on good spectroscopic observations.In the paper,those EWs are cataloged and their properties are analyzed.The distributions of orbital period(P),effective temperature(T),gravitational acceleration(log(g)),metallicity([Fe/H])and radial velocity(RV)are presented for these observed EW-type systems.It is shown that about 80.6% of sample stars have metallicity below zero,indicating that EW-type systems are old stellar populations.This is in agreement with the conclusion that EW binaries are formed from moderately close binaries through angular momentum loss via magnetic braking that takes a few hundred million to a few billion years.The unusually high metallicities of a few percent of EWs may be caused by contamination of material from the evolution of unseen neutron stars or black holes in the systems.The correlations between orbital period and effective temperature,gravitational acceleration and metallicity are presented and their scatters are mainly caused by(i)the presence of third bodies and(ii)sometimes wrongly determined periods.It is shown that some EWs contain evolved component stars and the physical properties of EWs mainly depend on their orbital periods.It is found that extremely short-period EWs may be older than their long-period cousins because they have lower metallicities.This reveals that they have a longer timescale of pre-contact evolution and their formation and evolution are mainly driven by angular momentum loss via magnetic braking.展开更多
ASAS J174406+2446.8 was originally found as aδScuti-type pulsating star with the period P=0.189068 d by ASAS survey.However,the LAMOST stellar parameters reveal that it is far beyond the red edge of pulsational insta...ASAS J174406+2446.8 was originally found as aδScuti-type pulsating star with the period P=0.189068 d by ASAS survey.However,the LAMOST stellar parameters reveal that it is far beyond the red edge of pulsational instability strip on the log g-T diagram ofδScuti pulsating stars.To understand the physical properties of the variable star,we observed it by the 1.0-m Cassegrain reflecting telescope at Yunnan Observatories.Multi-color light curves in B,V,R_c and I_c bands were obtained and are analyzed by using the W-D program.It is found that this variable star is a shallow-contact binary with an EB-type light curve and an orbital period of 0.3781 d rather than aδScuti star.It is a W-subtype contact binary with a mass ratio of 1.135(±0.019)and a fill-out factor of 10.4%(±5.6)%.The situation of ASAS J174406+2446.8 resembles those of other EB-type marginal-contact binaries such as UU Lyn,ⅡPer and GW Tau.All of them are at a key evolutionary phase from a semi-detached configuration to a contact system predicted by the thermal relaxation oscillation theory.The linear ephemeris was corrected by using 303 new determined times of light minimum.It is detected that the O-C curve shows a sinusoidal variation that could be explained by the light-travel-time effect via the presence of a cool red dwarf.The present investigation reveals that some of theδScuti-type stars beyond the red edge of pulsating instability strip on the log g-T diagram are misclassified eclipsing binaries.To understand their structures and evolutionary states,more studies are required in the future.展开更多
Contact binaries consist of two strongly interacting component stars where they are filling their critical Roche lobes and sharing a common envelope.Most of them are main-sequence stars,but some of them are post main-...Contact binaries consist of two strongly interacting component stars where they are filling their critical Roche lobes and sharing a common envelope.Most of them are main-sequence stars,but some of them are post main-sequence systems.They are good astrophysical laboratories for studying several problems such as the merging of binary stars,evolution of the common envelope,the origin of luminous red nova outbursts and the formation of rapidly rotating single stars with possible planetary systems.A large number of contact binary candidates were detected by several photometric surveys around the world and many of them were observed by the LAMOST spectroscopic survey.Based on follow-up observations,the evolutionary states and geometrical structures of some systems were understood well.In this review,we will introduce and catalog new stellar atmospheric parameters(i.e.,the effective temperature(Teff),the gravitational acceleration(log(g)),metallicity([Fe/H])and radial velocity(Vr))for 9149 EW-type contact binaries that were obtained based on low-and medium-resolution spectroscopic surveys of LAMOST.Then we will focus on several groups of contact binary stars,i.e.,marginal contact binary systems,deep and low-mass ratio contact binary stars,binary systems below the short-period limit of contact binaries and evolved contact binaries.Marginal contact binaries are at the beginning of the contact stage,while deep and low-mass ratio contact binary stars are at the final evolutionary stage of tidally locked binaries.Several statistical relations including the period-temperature relation are determined well by applying LAMOST data and their formation and evolutionary states are reviewed.The period-color relation of M-type binaries reveals that there are contact binaries below the short-period limit.Searching for and investigating contact binaries near and below this limit will help us to understand the formation of contact binary systems and a new prediction for the short-period limit is about 0.15 d.Some evolved contact binaries were detected by the LAMOST survey where both components are sub-giants or giants.They provide a good opportunity to investigate evolution of the common envelope and are the progenitors of luminous red novae like V1309 Sco.展开更多
About 786.4 thousand stars were observed by LAMOST twice or more during the first stage of its spectroscopic survey. The radial velocity differences for about 256 thousand targets are larger than10 km s^(-1) and they ...About 786.4 thousand stars were observed by LAMOST twice or more during the first stage of its spectroscopic survey. The radial velocity differences for about 256 thousand targets are larger than10 km s^(-1) and they are possible spectroscopic binary or variable candidates(SBVCs). It is shown that most SBVCs are slightly metal poorer than the Sun. There are two peaks in the temperature distribution of SBVCs around 5760 K and 4870 K, while there are three peaks in the distribution of the gravitational acceleration at 2.461, 4.171 and 4.621 cm s^(-2). The locations of SBVCs on the [Fe/H]-T, [Fe/H]-log g, log g-T and H-R diagrams are investigated. It is found that the detected SBVCs could be classified into four groups. The first group has higher log g~4.621 and lower T ~ 4870 K which are mainly cool red dwarf binaries. The second group of SBVCs has logg around 4.171 cm s^(-2) that includes binaries and pulsating stars such as δSet and γ Dor variables. The gravitational accelerations of the third group of SBVCs are higher and some of them are below the zero-age main sequence. They may be contact binaries in which the primary components are losing energy to the secondaries in the common envelopes and are at a special stellar evolutionary stage.The last group is composed of giants or supergiants with log g around 2.461 cm s^(-2) that may be evolved pulsating stars. One target(C134624.29+333921.2) is confirmed as an eclipsing binary with a period of 0.65 days. A preliminary analysis suggests that it is a detached binary with a mass ratio of 0.46. The primary fills its critical Roche lobe by about 89%, indicating that mass transfer will occur between the two components.展开更多
基金supported by the National Natural Science Foundation of China (No. 11325315)National Major Scientific Project built by the Chinese Academy of SciencesFunding for the project has been provided by the National Development and Reform Commission
文摘EW-type eclipsing binaries(hereafter called EWs)are strong interacting systems in which both component stars usually fill their critical Roche lobes and share a common envelope.Numerous EWs were discovered by several deep photometric surveys and there were about 40 785 EW-type binary systems listed in the international variable star index(VSX)by 2017 March 13.7938 of them were observed with LAMOST by 2016 November 30 and their spectral types were identified.Stellar atmospheric parameters of 5363 EW-type binary stars were determined based on good spectroscopic observations.In the paper,those EWs are cataloged and their properties are analyzed.The distributions of orbital period(P),effective temperature(T),gravitational acceleration(log(g)),metallicity([Fe/H])and radial velocity(RV)are presented for these observed EW-type systems.It is shown that about 80.6% of sample stars have metallicity below zero,indicating that EW-type systems are old stellar populations.This is in agreement with the conclusion that EW binaries are formed from moderately close binaries through angular momentum loss via magnetic braking that takes a few hundred million to a few billion years.The unusually high metallicities of a few percent of EWs may be caused by contamination of material from the evolution of unseen neutron stars or black holes in the systems.The correlations between orbital period and effective temperature,gravitational acceleration and metallicity are presented and their scatters are mainly caused by(i)the presence of third bodies and(ii)sometimes wrongly determined periods.It is shown that some EWs contain evolved component stars and the physical properties of EWs mainly depend on their orbital periods.It is found that extremely short-period EWs may be older than their long-period cousins because they have lower metallicities.This reveals that they have a longer timescale of pre-contact evolution and their formation and evolution are mainly driven by angular momentum loss via magnetic braking.
基金supported by the National Natural Science Foundation of China(Nos.11933008,11703080 and 11803084)the Yunnan Natural Science Foundation(No.2018FB006)。
文摘ASAS J174406+2446.8 was originally found as aδScuti-type pulsating star with the period P=0.189068 d by ASAS survey.However,the LAMOST stellar parameters reveal that it is far beyond the red edge of pulsational instability strip on the log g-T diagram ofδScuti pulsating stars.To understand the physical properties of the variable star,we observed it by the 1.0-m Cassegrain reflecting telescope at Yunnan Observatories.Multi-color light curves in B,V,R_c and I_c bands were obtained and are analyzed by using the W-D program.It is found that this variable star is a shallow-contact binary with an EB-type light curve and an orbital period of 0.3781 d rather than aδScuti star.It is a W-subtype contact binary with a mass ratio of 1.135(±0.019)and a fill-out factor of 10.4%(±5.6)%.The situation of ASAS J174406+2446.8 resembles those of other EB-type marginal-contact binaries such as UU Lyn,ⅡPer and GW Tau.All of them are at a key evolutionary phase from a semi-detached configuration to a contact system predicted by the thermal relaxation oscillation theory.The linear ephemeris was corrected by using 303 new determined times of light minimum.It is detected that the O-C curve shows a sinusoidal variation that could be explained by the light-travel-time effect via the presence of a cool red dwarf.The present investigation reveals that some of theδScuti-type stars beyond the red edge of pulsating instability strip on the log g-T diagram are misclassified eclipsing binaries.To understand their structures and evolutionary states,more studies are required in the future.
基金supported by the National Natural Science Foundation of China(Nos.11933008,11922306,11773066 and 11903076)the Open Project Program of the Key Laboratory of Optical Astronomy,National Astronomical Observatories,Chinese Academy of Sciences。
文摘Contact binaries consist of two strongly interacting component stars where they are filling their critical Roche lobes and sharing a common envelope.Most of them are main-sequence stars,but some of them are post main-sequence systems.They are good astrophysical laboratories for studying several problems such as the merging of binary stars,evolution of the common envelope,the origin of luminous red nova outbursts and the formation of rapidly rotating single stars with possible planetary systems.A large number of contact binary candidates were detected by several photometric surveys around the world and many of them were observed by the LAMOST spectroscopic survey.Based on follow-up observations,the evolutionary states and geometrical structures of some systems were understood well.In this review,we will introduce and catalog new stellar atmospheric parameters(i.e.,the effective temperature(Teff),the gravitational acceleration(log(g)),metallicity([Fe/H])and radial velocity(Vr))for 9149 EW-type contact binaries that were obtained based on low-and medium-resolution spectroscopic surveys of LAMOST.Then we will focus on several groups of contact binary stars,i.e.,marginal contact binary systems,deep and low-mass ratio contact binary stars,binary systems below the short-period limit of contact binaries and evolved contact binaries.Marginal contact binaries are at the beginning of the contact stage,while deep and low-mass ratio contact binary stars are at the final evolutionary stage of tidally locked binaries.Several statistical relations including the period-temperature relation are determined well by applying LAMOST data and their formation and evolutionary states are reviewed.The period-color relation of M-type binaries reveals that there are contact binaries below the short-period limit.Searching for and investigating contact binaries near and below this limit will help us to understand the formation of contact binary systems and a new prediction for the short-period limit is about 0.15 d.Some evolved contact binaries were detected by the LAMOST survey where both components are sub-giants or giants.They provide a good opportunity to investigate evolution of the common envelope and are the progenitors of luminous red novae like V1309 Sco.
基金The Guo Shou Jing Telescope (the Large Sky Area Multi-Object Fiber Spectroscopic Telescope, LAMOST) is a National Major Scientific Project built by the Chinese Academy of Sciencesprovided by the National Development and Reform Commission
文摘About 786.4 thousand stars were observed by LAMOST twice or more during the first stage of its spectroscopic survey. The radial velocity differences for about 256 thousand targets are larger than10 km s^(-1) and they are possible spectroscopic binary or variable candidates(SBVCs). It is shown that most SBVCs are slightly metal poorer than the Sun. There are two peaks in the temperature distribution of SBVCs around 5760 K and 4870 K, while there are three peaks in the distribution of the gravitational acceleration at 2.461, 4.171 and 4.621 cm s^(-2). The locations of SBVCs on the [Fe/H]-T, [Fe/H]-log g, log g-T and H-R diagrams are investigated. It is found that the detected SBVCs could be classified into four groups. The first group has higher log g~4.621 and lower T ~ 4870 K which are mainly cool red dwarf binaries. The second group of SBVCs has logg around 4.171 cm s^(-2) that includes binaries and pulsating stars such as δSet and γ Dor variables. The gravitational accelerations of the third group of SBVCs are higher and some of them are below the zero-age main sequence. They may be contact binaries in which the primary components are losing energy to the secondaries in the common envelopes and are at a special stellar evolutionary stage.The last group is composed of giants or supergiants with log g around 2.461 cm s^(-2) that may be evolved pulsating stars. One target(C134624.29+333921.2) is confirmed as an eclipsing binary with a period of 0.65 days. A preliminary analysis suggests that it is a detached binary with a mass ratio of 0.46. The primary fills its critical Roche lobe by about 89%, indicating that mass transfer will occur between the two components.