期刊文献+
共找到46篇文章
< 1 2 3 >
每页显示 20 50 100
SEI/dead Li-turning capacity loss for high-performance anode-free solid-state lithium batteries
1
作者 Qianwen Yin Tianyu li +3 位作者 Hongzhang Zhang Guiming Zhong Xiaofei Yang xianfeng li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期145-152,共8页
Anode-free solid-state lithium metal batteries(AF-SSLBs)have the potential to deliver higher energy density and improved safety beyond lithium-metal batteries.However,the unclear mechanism for the fast capacity decay ... Anode-free solid-state lithium metal batteries(AF-SSLBs)have the potential to deliver higher energy density and improved safety beyond lithium-metal batteries.However,the unclear mechanism for the fast capacity decay in AF-SSLBs,either determined by dead Li or solid electrolyte interface(SEI),limits the proposal of effective strategies to prolong cycling life.To clarify the underlying mechanism,herein,the evolution of SEI and dead Li is quantitatively analyzed by a solid-state nuclear magnetic resonance(ss-NMR)technology in a typical LiPF6-based polymer electrolyte.The results show that the initial capacity loss is attributed to the formation of SEI,while the dead Li dominates the following capacity loss and the growth rate is 0.141 mA h cm^(−2)cycle−1.To reduce the active Li loss,the combination of inorganic-rich SEI and self-healing electrostatic shield effect is proposed to improve the reversibility of Li deposition/dissolution behavior,which reduces the capacity loss rate for the initial SEI and following dead Li generation by 2.3 and 20.1 folds,respectively.As a result,the initial Coulombic efficiency(ICE)and stable CE increase by 15.1%and 15.3%in Li-Cu cells,which guides the rational design of high-performance AF-SSLBs. 展开更多
关键词 Solid-state lithium batteries Solid-state NMR Anode-free SEI Dead Li
在线阅读 下载PDF
Built defects of homogeneous junction to enhance the lithium storage capacity of niobium pentoxide materials
2
作者 Huibin Ding Yang Luo +5 位作者 Zihan Song Cong Chen Kai Feng Xiaofei Yang Hongzhang Zhang xianfeng li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期730-737,共8页
Niobium pentoxide(Nb_(2)O_(5))is deemed one of the promising anode materials for lithium-ion batteries(LIBs)for its outstanding intrinsic fast Li-(de)intercalation kinetics.The specific capacity,however,is still limit... Niobium pentoxide(Nb_(2)O_(5))is deemed one of the promising anode materials for lithium-ion batteries(LIBs)for its outstanding intrinsic fast Li-(de)intercalation kinetics.The specific capacity,however,is still limited,because the(de)intercalation of excessive Li-ions brings the undesired stress to damage Nb_(2)O_(5) crystals.To increase the capacity of Nb_(2)O_(5) and alleviate the lattice distortion caused by stress,numerous homogeneous H-and M-phases junction interfaces were proposed to produce coercive stress within theNb_(2)O_(5)crystals.Such interfaces bring about rich oxygen vacancies with structural shrinkage tendency,which pre-generate coercive stress to resist the expansion stress caused by excessive Li-ions intercalation.Therefore,the synthesized Nb_(2)O_(5) achieves the highest lithium storage capacity of 315 mA h g−1 to date,and exhibits high-rate performance(118 mA h g^(-1) at 20 C)as well as excellent cycling stability(138 mA h g^(-1) at 10 C after 600 cycles). 展开更多
关键词 Niobiumpent oxide Homojunction polycrystalline DEFECTS Oxygen vacancy
在线阅读 下载PDF
Trithiocyanuric acid derived g-C3N4 for anchoring the polysulfide in Li-S batteries application 被引量:7
3
作者 Ziyang Jia Hongzhang Zhang +4 位作者 Ying Yu Yuqing Chen Jingwang Yan xianfeng li Huamin Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第4期71-77,共7页
Lithium-sulfur (Li-S) batteries have great potential as an electrochemical energy storage system because of the high theoretical energy density and acceptable cost of financial and environment.However,the shuttle effe... Lithium-sulfur (Li-S) batteries have great potential as an electrochemical energy storage system because of the high theoretical energy density and acceptable cost of financial and environment.However,the shuttle effect leads to severe capacity fading and low coulombic efficiency.Here,graphitic carbon nitride(g-C3N4) is designed and prepared via a feasible and simple method from trithiocyanuric acid (TTCA) to anchor the polysulfides and suppress the shuttle effect.The obtained g-C3N4 exhibits strong chemical interaction with polysulfides due to its high N-doping of 56.87 at%,which is beneficial to improve the cycling stability of Li-S batteries.Moreover,the novel porous framework and high specific surface area of g-C3N4 also provide fast ion transport and broad reaction interface of sulfur cathode,facilitating high capacity output and superior rate performance of Li-S batteries.As a result,Li-S batteries assembled with g-C3N4 can achieve high discharge capacity of 1200 mAh/g at 0.2 C and over 800 mAh/g is remained after 100 cycles with a coulombic efficiency more than 99.5%.When the C-rate rises to 5 C,the reversible capacity of Li-S batteries can still maintain at 607mAh/g. 展开更多
关键词 Lithium SULFUR BATTERIES g-C3N4 CATHODE material Polarity interaction Trithiocyanuric acid
在线阅读 下载PDF
Vanadium-based polyanionic compounds as cathode materials for sodium-ion batteries:Toward high-energy and high-power applications 被引量:5
4
作者 Zhiqiang Lv Moxiang ling +4 位作者 Meng Yue xianfeng li Mingming Song Qjong Zheng Huamin Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第4期361-390,共30页
Sodium ion batteries(SIBs)have been regarded as one of the alternatives to lithium ion batteries owing to their wide availability and significantly low cost of sodium sources.However,they face serious challenges of lo... Sodium ion batteries(SIBs)have been regarded as one of the alternatives to lithium ion batteries owing to their wide availability and significantly low cost of sodium sources.However,they face serious challenges of low energy&power density and short cycling lifespan owing to the heavy mass and large radius of Na^(+).Vanadium-based polyanionic compounds have advantageous characteristic of high operating voltage,high ionic conductivity and robust structural framework,which is conducive to their high energy&power density and long lifespan for SIBs.In this review,we will overview the latest V-based polyanionic compounds,along with the respective characteristic from the intrinsic crystal structure to performance presentation and improvement for SIBs.One of the most important aspect is to discover the essential problems existed in the present V-based polyanionic compounds for high-energy&power applications,and point out most suitable solutions from the crystal structure modulation,interface tailoring and electrode configuration design.Moreover,some scientific issues of V-based polyanionic compounds shall be also proposed and related future direction shall be provided.We believe that this review can serve as a motivation for further development of novel V-based polyanionic compounds and drive them toward high energy&power applications in the near future. 展开更多
关键词 Sodium ion battery Vanadium-based polyanionic compounds High-energy&high-power applications Crystal structure modulation Interface tailoring Electrode configuration design
在线阅读 下载PDF
Aqueous K-ion battery incorporating environment-friendly organic compound and Berlin green 被引量:3
5
作者 Mingtan Wang Huaiqing Wang +1 位作者 Huamin Zhang xianfeng li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第9期14-20,I0002,共8页
Aqueous rechargeable metal-ion batteries(ARMBs)hold intrinsic advantages of high safety,low cost and environmental benignity for large scale energy storage technologies.However,the research on aqueous Kion batteries(A... Aqueous rechargeable metal-ion batteries(ARMBs)hold intrinsic advantages of high safety,low cost and environmental benignity for large scale energy storage technologies.However,the research on aqueous Kion batteries(AKIBs)was hindered by limited materials.Herein,a novel AKIB was reported by employing environment-friendly 1,4,5,8-naphthalenetetracarboxylic dianhydride-derived polyimide(PNTCDA)as anode and Berlin green(FeHCF)as cathode.Both electrodes have high rate performance and excellent capacity retention during cycling.Kinetics researches verify the superior electrochemical property of PNTCDA in saturated KNO3 solution.In-situ XRD of FeHCF demonstrates the unique shift of peak position and negligible distortion of lattice during the insertion/extraction of K+.The AKIB exhibits an attractive energy density of 46.9 Wh/kg and a high capacity retention of 74%in 300 cycles.More importantly,the battery can reach a super-high power of 2079.1 W/kg with an energy density of 24.2 Wh/kg,ranking relatively high among the ARIMs.This system extends the use of polyimide and points a way of AKIBs for grid-scale energy storage. 展开更多
关键词 POLYIMIDE Berlin green AQUEOUS POTASSIUM BATTERY
在线阅读 下载PDF
New insights into the formation of silicon-oxygen layer on lithium metal anode via in situ reaction with tetraethoxysilane 被引量:3
6
作者 Yang Luo Tianyu li +5 位作者 Hongzhang Zhang Ying Yu Arshad Hussain Jingwang Yan Huamin Zhang xianfeng li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第5期14-22,共9页
Lithium metal-based secondary batteries are very promising for next generation power battery due to their high energy density.However,lithium anodes suffer from poor electrochemical reversibility in organic electrolyt... Lithium metal-based secondary batteries are very promising for next generation power battery due to their high energy density.However,lithium anodes suffer from poor electrochemical reversibility in organic electrolytes due to Li dendrites and instability of the solid electrolyte interphase.Recent research demonstrated that the problem can be alleviated via tetraethoxysilane(TEOS)treated lithium metal to form a silicon oxide layer on the lithium surface,however,its reaction mechanism is controversial.Herein,we deeply explore the reaction mechanism between TEOS and Li and propose:Fresh Li can directly react with TEOS even though no lithium hydroxide exists on the lithium surface,and the participation of water will accelerate the reaction process.Moreover,it was found that the silicon oxide layer can promote the uniform deposition of lithium ions by providing lithiophilic nucleation sites,thereby achieving a long cycle life of Li metal batteries. 展开更多
关键词 Lithium metal anode Silicon-oxygen layer Lithiophilic SEI Tetraethoxysilane
在线阅读 下载PDF
Non-aqueous lithium bromine battery of high energy density with carbon coated membrane 被引量:1
7
作者 Xiaoli Xi xianfeng li +4 位作者 Chenhui Wang Qinzhi Lai Yuanhui Cheng Pengcheng Xu Huamin Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第4期639-646,共8页
Flow batteries with high energy density and long cycle life have been pursued to advance the progress of energy storage and grid application. Non-aqueous batteries with wide voltage windows represent a promising techn... Flow batteries with high energy density and long cycle life have been pursued to advance the progress of energy storage and grid application. Non-aqueous batteries with wide voltage windows represent a promising technology without the limitation of water electrolysis, but they suffer from low electrolyte concentration and unsatisfactory battery performance. Here, a non-aqueous lithium bromine rechargeable battery is proposed, which is based on Br;/Br;and Li;/Li as active redox pairs, with fast redox kinetics and good stability. The Li/Br battery combines the advantages of high output voltage(;.1 V),electrolyte concentration(3.0 mol/L), maximum power density(29.1 m W/cm;) and practical energy density(232.6 Wh/kg). Additionally, the battery displays a columbic efficiency(CE) of 90.0%, a voltage efficiency(VE) of 88.0% and an energy efficiency(EE) of 80.0% at 1.0 m A/cm;after continuously running for more than 1000 cycles, which is by far the longest cycle life reported for non-aqueous flow batteries. 展开更多
关键词 NON-AQUEOUS BATTERY LITHIUM BROMINE ENERGY-STORAGE
在线阅读 下载PDF
Ni-P-SBR composite-electroless-plating enables Si anode with high conductivity and elasticity for high performance Li-ion batteries application
8
作者 Yuxiao Wang Jian Gou +3 位作者 Hongzhang Zhang Xiaofei Yang Huamin Zhang xianfeng li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第1期59-66,I0003,共9页
Silica-based anode is widely employed for high energy density Li-ion batteries owing to their high theoretical specific capacity(4200 m A h g-1).However,it is always accompanied by a huge volume expansion(300%)and shr... Silica-based anode is widely employed for high energy density Li-ion batteries owing to their high theoretical specific capacity(4200 m A h g-1).However,it is always accompanied by a huge volume expansion(300%)and shrinks during the lithiation/delithiation process,further leading to low cycle stability.Efforts to mitigate the adverse effects caused by volume expansion such as robust binder matrix,Coreshell structure,etc.,inevitably affect the electronic conductivity within the electrode.Herein,a high conductivity and elasticity Si anode(Ni-P-SBR(styrene-butadiene rubber)@Si)was designed and fabricated via the Ni-P-SBR composite-electroless-plating process.In this design,the Si particles are surrounded by SBR polymer and Ni particles,where the SBR can adapt to the volume change and Ni particles can provide the electrode with high electronic conductivity.Therefore,the Ni-P-SBR@Si delivers a high initial capacity of 3470 m A h g-1and presents capacity retention of 49.4%within 200 cycles at 600 m A g-1.Additionally,a high capacity of 1153 m A h g-1can be achieved at 2000 m A g-1and can be cycled stably under bending conditions.This strategy provides feasible ideas to solve the key issues that limit the practical application of Si anodes. 展开更多
关键词 Silicon anode Volume expansion Composite-electroless-plating High elasticity High electronic conductivity
在线阅读 下载PDF
Tectonic implications of the subduction of the Kyushu-Palau Ridge beneath the Kyushu,southwest Japan
9
作者 Chenglong Xia Yanpeng Zheng +4 位作者 Baohua liu Qingfeng Hua Long Ma xianfeng li Qiuhong Xie 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2021年第3期70-83,共14页
The Kyushu-Palau Ridge(KPR),a remnant arc on the Philippine Sea Plate(PSP),is subducting beneath the Kyushu,southwest Japan.Influenced by the subducting KPR,the Kyushu subduction zone corresponding to the KPR is signi... The Kyushu-Palau Ridge(KPR),a remnant arc on the Philippine Sea Plate(PSP),is subducting beneath the Kyushu,southwest Japan.Influenced by the subducting KPR,the Kyushu subduction zone corresponding to the KPR is significantly different from Shikoku subduction zone in terms of gravity anomalies,seismicity,the stress state,and the subducting slab morphology.Significant negative free-air and Bouguer gravity anomalies are observed in a prolonged area of KPR,southeast of the Miyazaki Plain,indicating that this is where KPR overlaps the overriding plate.The gravity anomaly in this area is much lower than that in other areas where the inferred KPR extends,suggesting that the subduction of the buoyant KPR may cause the lower mantle density to decrease.More earthquakes have occurred in Hyuga-nada region where the KPR subducts than in Shikoku forearc and other areas in the Kyushu forearc,indicating that the subduction of the KPR enhances the local coupling between the subducting and overriding plates.The centroid moment tensor(CMT)mechanism of earthquakes shows that stress is concentrated in the accumulated crust beneath the Kyushu forearc corresponding to the KPR,and the shallow thrusting events in the obducting plate are caused by the KPR subduction.The buoyant KPR,with a large volume of low-density sediments,was responsible for the differences of the subduction depth and dip angle of the subducting Philippine Sea(PS)slab between northern Kyushu and Shikoku.The seismic gaps and the sudden change of the dipping angle of the subducting PS slab indicate that slab tear may have occurred along the west side of the KPR beneath southwest Kyushu.A two-tear model was proposed,and the subduction of the buoyant KPR was believed to play an important role in the slab tear. 展开更多
关键词 Kyushu-Palau Ridge gravity anomaly SEISMICITY slab morphology slab tear
在线阅读 下载PDF
Revealing the effect of electrolyte coordination structures on the intercalation chemistry of batteries
10
作者 Chao Wang Xianjin li +6 位作者 Guiming Zhong Caixia Meng Shiwen li Guohui Zhang Yanxiao Ning xianfeng li Qiang Fu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第6期149-156,I0006,共9页
In-depth understanding of the electrolyte-dependent intercalation chemistry in batteries through direct operando/in situ characterizations is crucial for the development of the high-performance batteries.Herein,taking... In-depth understanding of the electrolyte-dependent intercalation chemistry in batteries through direct operando/in situ characterizations is crucial for the development of the high-performance batteries.Herein,taking the Al/graphite battery as a model system,the effect of electrolyte coordination structure on the intercalation processes has been investigated over the batteries with either 1-hexyl-3-methylimidazolium chloride(HMICl)-AlCl_(3) or 1-ethyl-3-methylimidazolium chloride(EMICl)-AlCl_(3) ionic liquid electrolyte using operando X-ray photoelectron spectroscopy(XPS)and X-ray diffraction.With a weaker anion-cation interaction in HMI-based electrolyte,the XPS-derived atomic ratio between cointercalated N and intercalated Al is 0.9,which is lower than 1.6 for EMI-based electrolyte.Attributed to the additional de-solvation process,the batteries with the HMI-based electrolyte show a lower ionic diffusion rate,capacity,and cycling performance,which agree with the operando characterization results.Our findings highlight the critical role of the electrolyte coordination structure on the(co-)intercalation chemistry. 展开更多
关键词 Operando surface characterization Electrolyte coordination structure De-solvation Intercalation chemistry
在线阅读 下载PDF
Low Distortion Quick Response Noise Filter Realized withAverage Peaks Method
11
作者 Lei liu Jianyue Ren +2 位作者 Ko-Wen Jwo Yu Zhang xianfeng li 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2016年第5期39-44,共6页
The filter proposed in this paper is expected to reduce noise whose frequency is lower than higher order harmonics of real signals.It is based on the distributive characteristics of noise,and uses analog circuits to s... The filter proposed in this paper is expected to reduce noise whose frequency is lower than higher order harmonics of real signals.It is based on the distributive characteristics of noise,and uses analog circuits to select the high peak and low peak of the input signal and applies their average in order to reduce random noise.So it has no cutoff frequency and higher order harmonics of real signals are remained.As a result,it gives an instant response to changes in input signals and retains the integrity of real signals.Furthermore,it has only a small phase delay.The simulation results of slew rate,phase delay and spectral analysis under MULTISIM indicate that the quick response noise filter achieves a high slew rate of 472 V/ms and the phase shift is nearly zero.By having it used in a color tester design,it is also demonstrated that the proposed filter effectively reduces noise and remains signal integrity.With the filter 's help,the relative standard deviation of the spectrograph decreases from 1% to 0.22%,indicating better stability. 展开更多
关键词 low distortion quick response FILTER cutoff frequency
在线阅读 下载PDF
Oxygen vacancy-boosted thermocatalytic CO_(2) hydrogenation:Engineering strategies,promoting effects and mediating mechanisms
12
作者 Guiming Xie Xiaorui Wang +3 位作者 xianfeng li Yunming Fang Runduo Zhang Zhou-jun Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第12期393-408,共16页
Thermocatalytic CO_(2) hydrogenation with"green"H_(2) is one of the most promising carbon-negative technologies,wherein oxygen vacancy engineering serves as a novel strategy to boost the catalytic performanc... Thermocatalytic CO_(2) hydrogenation with"green"H_(2) is one of the most promising carbon-negative technologies,wherein oxygen vacancy engineering serves as a novel strategy to boost the catalytic performance of oxide-containing catalysts.To provide theoretical guidance and promote technical progress in this important field,the status and prospect of oxygen vacancy-boosted thermocatalytic CO_(2) hydrogenation have been thoroughly reviewed herein.Specifically,fundamentals including origin,construction,characterization,and function of oxygen vacancies will be systematically summarized and oxygen vacancy-boosted hydrogenation reactions including methanation,reverse water-gas shift(RWGS),methanol synthesis,and other hydrogenation processes will be comprehensively introduced.In addition,challenges and opportunities from the perspective of engineering strategies,promoting effects,and mediating mechanisms of oxygen vacancies will be succinctly proposed.Overall,this review is expected to gain more insights into the role of oxygen vacancies and shed new light on the design of efficient oxide-containing catalysts. 展开更多
关键词 Oxygen vacancies Carbon dioxide Hydrogen Thermocatalysis Oxide-containing catalysts
在线阅读 下载PDF
A Composite Transformer-Based Multi-Stage Defect Detection Architecture for Sewer Pipes
13
作者 Zifeng Yu xianfeng li +2 位作者 lianpeng Sun Jinjun Zhu Jianxin lin 《Computers, Materials & Continua》 SCIE EI 2024年第1期435-451,共17页
Urban sewer pipes are a vital infrastructure in modern cities,and their defects must be detected in time to prevent potential malfunctioning.In recent years,to relieve the manual efforts by human experts,models based ... Urban sewer pipes are a vital infrastructure in modern cities,and their defects must be detected in time to prevent potential malfunctioning.In recent years,to relieve the manual efforts by human experts,models based on deep learning have been introduced to automatically identify potential defects.However,these models are insufficient in terms of dataset complexity,model versatility and performance.Our work addresses these issues with amulti-stage defect detection architecture using a composite backbone Swin Transformer.Themodel based on this architecture is trained using a more comprehensive dataset containingmore classes of defects.By ablation studies on the modules of combined backbone Swin Transformer,multi-stage detector,test-time data augmentation and model fusion,it is revealed that they all contribute to the improvement of detection accuracy from different aspects.The model incorporating all these modules achieves the mean Average Precision(mAP)of 78.6% at an Intersection over Union(IoU)threshold of 0.5.This represents an improvement of 14.1% over the ResNet50 Faster Region-based Convolutional Neural Network(R-CNN)model and a 6.7% improvement over You Only Look Once version 6(YOLOv6)-large,the highest in the YOLO methods.In addition,for other defect detection models for sewer pipes,although direct comparison with themis infeasible due to the unavailability of their private datasets,our results are obtained from a more comprehensive dataset and have superior generalization capabilities. 展开更多
关键词 Sewer pipe defect detection deep learning model optimization composite transformer
在线阅读 下载PDF
Progress and prospect for NASICON-type Na3V2(PO4)3 forelectrochemical energy storage 被引量:9
14
作者 Qiong Zheng Hongming Yi +1 位作者 xianfeng li Huamin Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第6期1597-1617,共21页
Sodium-ion batteries (SIBs) have attracted increasing attention in the past decades, because of high over-all abundance of precursors, their even geographical distribution, and low cost. Na3V2(PO4)3 (NVP), atypi... Sodium-ion batteries (SIBs) have attracted increasing attention in the past decades, because of high over-all abundance of precursors, their even geographical distribution, and low cost. Na3V2(PO4)3 (NVP), atypical sodium super ion conductor (NASlCON)-based electrode material, exhibits pronounced structuralstability, exceptionally high ion conductivity, rendering it a most promising electrode for sodium storage.However. the comparatively low electronic conductivity makes the theoretical capacity of NVP cannot befully accessible even at comparatively low rates, presenting a major drawback for further practical ap-plications, especially when high rate capability is especially important. Thus, many endeavors have beenconformed to increase the surface and intrinsic electrical conductivity of NVP by coating the active mate-rials with a conductive carbon layer, downsizing the NVP particles, combining the NVP particle with vari-ous carbon materials and ion doping strategy. In this review, to get a better understanding on the sodiumstorage in NVP, we firstly present 4 distinct crystal structures in the temperature range of-30℃-225℃ namely α-NVP, β-NVP, β′-NVP and γ-NVP. Moreover, we give an overview of recent approaches to en-hance the surface electrical conductivity and intrinsic electrical conductivity of NVP. Finally, some poten-tial applications of NVP such as in all-climate environment and PHEV, EV fields have been prospected. 展开更多
关键词 Sodium ion batteries Na3 V2(PO4)3Crystal structure Electrical conductivity Energy storage
在线阅读 下载PDF
Progress on the electrode materials towards vanadium flow batteries (VFBs) with improved power density 被引量:3
15
作者 Tao liu xianfeng li +1 位作者 Huamin Zhang Jizhong Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第5期1292-1303,共12页
The vanadium flow battery (VFB) has been considered as one of the most promising large-scale energy storage technologies in terms of its design flexibility, long cycle life, high efficiency and high safety. How- eve... The vanadium flow battery (VFB) has been considered as one of the most promising large-scale energy storage technologies in terms of its design flexibility, long cycle life, high efficiency and high safety. How- ever, the high cost prevents the VFB technology from broader market penetration. Improving the power density of the VFB is an effective solution to reduce its cost due to the reduced material consumption and stack size. Electrode, as one of the main components in the VFB, providing the reactions sites for redox couples, has an important effect on the voltage loss of the VFB associated with electrochemical polariza- tion, ohmic polarization and concentration polarization. Extensive research has been carried out on the electrode modification to reduce polarizations and hence improve the power density of the VFB. In this review, state-of-the-art of various modification methods on the VFB electrode materials is overviewed and summarized, and the future research directions helpful to reduce polarization loss are presented. 展开更多
关键词 Vanadium flow batteries POLARIZATION ELECTRODE Carbon ELECTROCATALYST
在线阅读 下载PDF
A low-cost bromine-fixed additive enables a high capacity retention zinc-bromine batteries 被引量:3
16
作者 Pengcheng Xu Tianyu li +3 位作者 Qiong Zheng Huamin Zhang Yanbin Yin xianfeng li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第2期89-93,共5页
In recent years,more and more efforts are devoting to clean energy,renewable energies in particular to achieving net zero carbon dioxide emissions[1].However,renewable energies,like solar power and wind power,are gene... In recent years,more and more efforts are devoting to clean energy,renewable energies in particular to achieving net zero carbon dioxide emissions[1].However,renewable energies,like solar power and wind power,are generally intermittent and random,hindering their wide application[2,3].To address this problem,there is an urgent need in effective and reliable energy storage device. 展开更多
关键词 Zinc-bromine battery Bromine-fixed additive Capacity retention Tetraethylammonium bromide
在线阅读 下载PDF
Low-cost all-iron flow battery with high performance towards long-duration energy storage 被引量:2
17
作者 Xiaoqi liu Tianyu li +1 位作者 Zhizhang Yuan xianfeng li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第10期445-451,I0011,共8页
Long duration energy storage(LDES)technologies are vital for wide utilization of renewable energy sources and increasing the penetration of these technologies within energy infrastructures.Herein,we propose a low-cost... Long duration energy storage(LDES)technologies are vital for wide utilization of renewable energy sources and increasing the penetration of these technologies within energy infrastructures.Herein,we propose a low-cost alkaline all-iron flow battery by coupling ferri/ferro-cyanide redox couple with ferric/ferrous-gluconate complexes redox couple.The designed all-iron flow battery demonstrates a coulombic efficiency of above 99%and an energy efficiency of~83%at a current density of80 m A cm^(-2),which can continuously run for more than 950 cycles.Most importantly,the battery demonstrates a coulombic efficiency of more than 99.0%and an energy efficiency of~83%for a long duration(~12,16 and 20 h per cycle)charge/discharge process.Benefiting from the low cost of iron electrolytes,the overall cost of the all-iron flow battery system can be reached as low as$76.11 per k Wh based on a10 h system with a power of 9.9 k W.This work provides a new option for next-generation cost-effective flow batteries for long duration large scale energy storage. 展开更多
关键词 Long-duration energy storage All-iron flow battery Iron-based complexes High performance GLUCONATE
在线阅读 下载PDF
Effect of the pore length and orientation upon the electrochemical capacitive performance of ordered mesoporous carbons 被引量:2
18
作者 Anran Huang Jingwang Yan +2 位作者 Hongzhang Zhang xianfeng li Huamin Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第1期121-128,共8页
By utilizing hard template method to adjust the mesopore length, and alkali activation to generate micro pores, two hierarchical porous carbons (HPCs) were prepared. With controlling of their mesopore length and the a... By utilizing hard template method to adjust the mesopore length, and alkali activation to generate micro pores, two hierarchical porous carbons (HPCs) were prepared. With controlling of their mesopore length and the activation conditions, the complex system composed by HPCs and electrolyte was simplified and the effect of mesopore length on the performance of HPCs as electrodes in supercapacitors was investigated. It is found that with the mesopore length getting smaller, the ordered area gets smaller and the aggregation occurs, which is caused by the high surface energy of small grains. HPC with long pores (HPCL) exhibits a donut-like morphology with well-defined ordered mesopores and a regular orientation while in HPC with short pores (HPCS), short mesopores are only orderly distributed in small regions. Longer ordered channels form unobstructed ways for ions transport in the particles while shorter channels, only orderly distributed in small areas, results in blocked paths, which may hinder the electrolyte ions transport. Due to the unobstructed structure, HPCL exhibits good rate capability with a capacitance retention rate over 86% as current density increasing from 50 mA/g to 1000 mA/g. The specific capacitance of HPCL derived from the cyclic voltammetry test at 10 mV/s is up to 201.72 F/g, while the specific capacitance of HPCS is only 193.65 F/g. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved. 展开更多
关键词 SUPERCAPACITOR Hierarchical porous carbon Ordered mesoporous carbon Hard template
在线阅读 下载PDF
Opportunities and challenges of organic flow battery for electrochemical energy storage technology 被引量:2
19
作者 Ziming Zhao Changkun Zhang xianfeng li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第4期621-639,共19页
For flow batteries(FBs), the current technologies are still expensive and have relatively low energy density, which limits their large-scale applications. Organic FBs(OFBs) which employ organic molecules as redox-acti... For flow batteries(FBs), the current technologies are still expensive and have relatively low energy density, which limits their large-scale applications. Organic FBs(OFBs) which employ organic molecules as redox-active materials have been considered as one of the promising technologies for achieving lowcost and high-performance. Herein, we present a critical overview of the progress on the OFBs, including the design principles of key components(redox-active molecules, membranes, and electrodes) and the latest achievement in both aqueous and nonaqueous systems. Finally, future directions in explorations of the high-performance OFB for electrochemical energy storage are also highlighted. 展开更多
关键词 Electrochemical energy storage Flow battery Organic systems Organic redox-active molecules
在线阅读 下载PDF
Bromine-Graphite Intercalation Enabled Two-Electron Transfer for a Bromine-Based Flow Battery 被引量:2
20
作者 Yue Xu Congxin Xie xianfeng li 《Transactions of Tianjin University》 EI CAS 2022年第3期186-192,共7页
Br_(2)/Br^(−)is a promising redox couple in fl ow batteries because of its high potential,solubility,and low cost.However,the reaction between Br^(−)and Br_(2)only involves a single-electron transfer process,which lim... Br_(2)/Br^(−)is a promising redox couple in fl ow batteries because of its high potential,solubility,and low cost.However,the reaction between Br^(−)and Br_(2)only involves a single-electron transfer process,which limits its energy density.Herein,a novel two-electron transfer reaction based on Br^(−)/Br^(+) was studied and realized through Br^(+) intercalation into graphite to form a bromine-graphite intercalation compound(Br-GIC).Compared with the pristine Br^(−)/Br_(2)redox pair,the redox potential of Br intercalation/deintercalation in graphite is 0.5 V higher,which has the potential to substantially increase the energy density.Diff erent from Br_(2)/Br^(−)in the electrolyte,the diff usion rate of Br intercalation in graphite decreases with increasing charge state because of the decreasing intercalation sites in graphite,and the integrity of the graphite structure is important for the intercalation reaction.As a result,the battery can continuously run for more than 300 cycles with a Coulombic effi-ciency exceeding 97%and an energy effi ciency of approximately 80%at 30 mA/cm^(2),and the energy density increases by 65%compared with Br^(−)/Br_(2).Combined with double-electron transfer and a highly reversible electrochemical process,the Br intercalation redox couple demonstrates very promising prospects for stationary energy storage. 展开更多
关键词 Flow battery Two-electron transfer Bromine-graphite intercalation BROMINE
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部