Vitis amurensis is a wild Vitis plant that can withstand extreme cold temperatures.However,the accumulation of metabolites during cold acclimation(CA)in V.amurensis remains largely unknown.In this study,plantlets of V...Vitis amurensis is a wild Vitis plant that can withstand extreme cold temperatures.However,the accumulation of metabolites during cold acclimation(CA)in V.amurensis remains largely unknown.In this study,plantlets of V.amurensis and V.vinifera cv.Muscat of Hamburg were treated at 4℃ for 24 and 72 h,and changes of metabolites in leaves were detected by gas chromatography coupled with time-of-flight mass spectrometry.Most of the identified metabolites,including carbohydrates,amino acids,and organic acids,accumulated in the two types of grape after CA.Galactinol,raffinose,fructose,mannose,glycine,and ascorbate were continuously induced by cold in V.amurensis,but not in Muscat of Hamburg.Twelve metabolites,including isoleucine,valine,proline,2-oxoglutarate,and putrescine,increased in V.amurensis during CA.More galactinol,ascorbate,2-oxoglutarate,and putrescine,accumulated in V.amurensis,but not in Muscat of Hamburg,during CA,which may be responsible for the excellent cold tolerance in V.amurensis.The expression levels of the genes encodingβ-amylase(BAMY),galactinol synthase(GolS),and raffinose synthase(RafS)were evaluated by quantitative reverse transcription-PCR.The expression BAMY(VIT_02s0012 g00170)and RafS(VIT_05s0077 g00840)were primarily responsible for the accumulation of maltose and raffinose,respectively.The accumulation of galactinol was attributed to different members of GolS in the two grapes.In conclusion,these results show the inherent differences in metabolites between V.amurensis and V.vinifera under CA.展开更多
OBJECTIVE:To analyze the constituents of volatile oils extracted from Yuan Zhi(Radix Polygalae),Shi Chang Pu(Acorus Tatarinowii),and a mixture of the two herbs.METHODS:The volatile oils were extracted using supercriti...OBJECTIVE:To analyze the constituents of volatile oils extracted from Yuan Zhi(Radix Polygalae),Shi Chang Pu(Acorus Tatarinowii),and a mixture of the two herbs.METHODS:The volatile oils were extracted using supercritical fluid extraction(SFE) with CO 2,and the constituents of the volatile oil extracts were analyzed by gas chromatography-mass spectrometry(GC-MS).The relative content of each component was calculated using peak area normalization.RESULTS:The optimized SFE conditions were 45 MPa at 35℃ for 2 h.Twenty-four compounds were identified in the extract from the Yuan Zhi(Radix Polygalae) and Shi Chang Pu(Acorus Tatarinowii) mixture,and six of these had relative contents >1.These compounds were 1,2-dimethoxy-4-(2-propenyl)-benzene;1,2,3-trimethoxy-5-(2-propenyl)-benzene;β-asarone;(Z,Z) 9,12-octadecadienoic acid;(Z) 6-octadecenoic acid;and ethyl oleate.Combination of the herbs increased the number of pharmacologically active substances in the extract and decreased the number of compounds with one benzene ring compared with the extracts from the individual herbs.CONCLUSION:These results indicate there is a synergistic relationship among the compounds in these herbs.展开更多
Large tumor suppressor 1(LATS1)is the key kinase controlling activation of Hippo signalling pathway.Post-translational modifications of LATS1 modulate its kinase activity.However,detailed mechanism underlying LATS1 st...Large tumor suppressor 1(LATS1)is the key kinase controlling activation of Hippo signalling pathway.Post-translational modifications of LATS1 modulate its kinase activity.However,detailed mechanism underlying LATS1 stability and activation remains elusive.Here we report that LATS1 is acetylated by acetyltransferase CBP at K751 and is deacetylated by deacetylases SIRT3 and SIRT4.Acetylation at K751 stabilized LATS1 by decreasing LATS1 ubiquitination and inhibited LATS1 activation by reducing its phosphorylation.Mechanistically,LATS1 acetylation resulted in inhibition of YAP phosphorylation and degradation,leading to increased YAP nucleus translocation and promoted target gene expression.Functionally,LATS1-K751 Q,the acetylation mimic mutant potentiated lung cancer cell migration,invasion and tumor growth,whereas LATS1-K751 R,the acetylation deficient mutant inhibited these functions.Taken together,we demonstrated a previously unidentified post-translational modification of LATS1 that converts LATS1 from a tumor suppressor to a tumor promoter by suppression of Hippo signalling through acetylation of LATS1.展开更多
Small ubiquitin-like modifiers(SUMOs)are protein modifiers that can form polymeric chains.They are important signals in cellular processes,and their study and profiling require the development of molecular tools.Herei...Small ubiquitin-like modifiers(SUMOs)are protein modifiers that can form polymeric chains.They are important signals in cellular processes,and their study and profiling require the development of molecular tools.Herein,the authors have reported an efficient chemical protein synthesis approach for the generation of dimeric SUMO-2-based photoaffinity probes through the ligation of four readily synthesizable peptides.Proteomic studies using this diSUMO-2 probe on HeLa cell nuclear lysate found it to capture a significantly different selection of proteins compared with its monoSUMO counterparts.This resulted in the identification of several previously unknown SUMO chain-specific interacting proteins such as 40S ribosomal protein S3,which showed a significantly higher affinity for polySUMO chains than monomeric SUMO.Collectively,these results emphasize the need to develop SUMO chain-based probes in other species,and to shed light on the important role of polySUMOylation in diseases.展开更多
基金The Youth Innovation Promotion Association of CAS(2015281)National Natural Science Foundation of China(NSFC Accession No.31471857 and 31672132)+1 种基金Science and Technology Service Network Initiative of CAS(KFJ-STSZDTP-025)Grape Breeding Project of Ningxia(NXNYYZ201502)supported this work.
文摘Vitis amurensis is a wild Vitis plant that can withstand extreme cold temperatures.However,the accumulation of metabolites during cold acclimation(CA)in V.amurensis remains largely unknown.In this study,plantlets of V.amurensis and V.vinifera cv.Muscat of Hamburg were treated at 4℃ for 24 and 72 h,and changes of metabolites in leaves were detected by gas chromatography coupled with time-of-flight mass spectrometry.Most of the identified metabolites,including carbohydrates,amino acids,and organic acids,accumulated in the two types of grape after CA.Galactinol,raffinose,fructose,mannose,glycine,and ascorbate were continuously induced by cold in V.amurensis,but not in Muscat of Hamburg.Twelve metabolites,including isoleucine,valine,proline,2-oxoglutarate,and putrescine,increased in V.amurensis during CA.More galactinol,ascorbate,2-oxoglutarate,and putrescine,accumulated in V.amurensis,but not in Muscat of Hamburg,during CA,which may be responsible for the excellent cold tolerance in V.amurensis.The expression levels of the genes encodingβ-amylase(BAMY),galactinol synthase(GolS),and raffinose synthase(RafS)were evaluated by quantitative reverse transcription-PCR.The expression BAMY(VIT_02s0012 g00170)and RafS(VIT_05s0077 g00840)were primarily responsible for the accumulation of maltose and raffinose,respectively.The accumulation of galactinol was attributed to different members of GolS in the two grapes.In conclusion,these results show the inherent differences in metabolites between V.amurensis and V.vinifera under CA.
基金Supported by Shanxi Science and Technology Tackling Fund(No.20100311090)Shanxi Provincial Health Department Science and Technology Tackling Fund (No.2008034)
文摘OBJECTIVE:To analyze the constituents of volatile oils extracted from Yuan Zhi(Radix Polygalae),Shi Chang Pu(Acorus Tatarinowii),and a mixture of the two herbs.METHODS:The volatile oils were extracted using supercritical fluid extraction(SFE) with CO 2,and the constituents of the volatile oil extracts were analyzed by gas chromatography-mass spectrometry(GC-MS).The relative content of each component was calculated using peak area normalization.RESULTS:The optimized SFE conditions were 45 MPa at 35℃ for 2 h.Twenty-four compounds were identified in the extract from the Yuan Zhi(Radix Polygalae) and Shi Chang Pu(Acorus Tatarinowii) mixture,and six of these had relative contents >1.These compounds were 1,2-dimethoxy-4-(2-propenyl)-benzene;1,2,3-trimethoxy-5-(2-propenyl)-benzene;β-asarone;(Z,Z) 9,12-octadecadienoic acid;(Z) 6-octadecenoic acid;and ethyl oleate.Combination of the herbs increased the number of pharmacologically active substances in the extract and decreased the number of compounds with one benzene ring compared with the extracts from the individual herbs.CONCLUSION:These results indicate there is a synergistic relationship among the compounds in these herbs.
基金supported by the National Natural Science Foundation of China(81730071,81972616,81230051,81472734,31170711 and 81773199)the Ministry of Science and Technology of China(2016YFC1302103 and 2015CB553906)+1 种基金Beijing Natural Science Foundation(7120002 and 7171005)Peking University(BMU2018JC004,BMU20120314 and BMU20130364)。
文摘Large tumor suppressor 1(LATS1)is the key kinase controlling activation of Hippo signalling pathway.Post-translational modifications of LATS1 modulate its kinase activity.However,detailed mechanism underlying LATS1 stability and activation remains elusive.Here we report that LATS1 is acetylated by acetyltransferase CBP at K751 and is deacetylated by deacetylases SIRT3 and SIRT4.Acetylation at K751 stabilized LATS1 by decreasing LATS1 ubiquitination and inhibited LATS1 activation by reducing its phosphorylation.Mechanistically,LATS1 acetylation resulted in inhibition of YAP phosphorylation and degradation,leading to increased YAP nucleus translocation and promoted target gene expression.Functionally,LATS1-K751 Q,the acetylation mimic mutant potentiated lung cancer cell migration,invasion and tumor growth,whereas LATS1-K751 R,the acetylation deficient mutant inhibited these functions.Taken together,we demonstrated a previously unidentified post-translational modification of LATS1 that converts LATS1 from a tumor suppressor to a tumor promoter by suppression of Hippo signalling through acetylation of LATS1.
基金This study was supported by the National Key R&D Program of China(nos.2017YFA0505200 and 2017YFA0505400)the National Natural Science Foundation of China(nos.91753205,21877024,21977089,81621002,and 21621003)the Fundamental Research Funds for the Central Universities(no.JZ2019HGPB0105).
文摘Small ubiquitin-like modifiers(SUMOs)are protein modifiers that can form polymeric chains.They are important signals in cellular processes,and their study and profiling require the development of molecular tools.Herein,the authors have reported an efficient chemical protein synthesis approach for the generation of dimeric SUMO-2-based photoaffinity probes through the ligation of four readily synthesizable peptides.Proteomic studies using this diSUMO-2 probe on HeLa cell nuclear lysate found it to capture a significantly different selection of proteins compared with its monoSUMO counterparts.This resulted in the identification of several previously unknown SUMO chain-specific interacting proteins such as 40S ribosomal protein S3,which showed a significantly higher affinity for polySUMO chains than monomeric SUMO.Collectively,these results emphasize the need to develop SUMO chain-based probes in other species,and to shed light on the important role of polySUMOylation in diseases.