Studying the coupling coordination development of new energy vehicles(NEVs)and the ecological environment in China is helpful in promoting the development of NEVs in the country and is of great significance in promoti...Studying the coupling coordination development of new energy vehicles(NEVs)and the ecological environment in China is helpful in promoting the development of NEVs in the country and is of great significance in promoting high-quality development of new energy in China.This paper constructs an evaluation index system for the development of NEVs and the ecological environment.It uses game theory combining weighting model,particle swarm optimized projection tracking evaluation model,coupling coordination degree model,and machine learning algorithms to calculate and analyze the level of coupling coordination development of NEVs and the ecological environment in China from 2010 to 2021,and identifies the driving factors.The research results show that:(i)From 2010 to 2021,the development index of NEVs in China has steadily increased from 0.085 to 0.634,while the ecological environment level index significantly rose from 0.170 to 0.884,reflecting the continuous development of China in both NEVs and the ecological environment.(ii)From 2010 to 2012,the two systems—new energy vehicle(NEV)development and the ecological environment—were in a period of imbalance and decline.From 2013 to 2016,they underwent a transition period,and from 2017 to 2021,they entered a period of coordinated development showing a trend of benign and continuous improvement.By 2021,they reached a good level of coordination.(iii)Indicators such as the number of patents granted for NEVs,water consumption per unit of GDP,and energy consumption per unit of GDP are the main driving factors affecting the coupling coordination development of NEVs and the ecological environment in China.展开更多
Breast cancer is presently one of the most common malignancies worldwide,with a higher fatality rate.In this study,a quantitative structure-activity relationship(QSAR)model of compound biological activity and ADMET(Ab...Breast cancer is presently one of the most common malignancies worldwide,with a higher fatality rate.In this study,a quantitative structure-activity relationship(QSAR)model of compound biological activity and ADMET(Absorption,Distribution,Metabolism,Excretion,Toxicity)properties prediction model were performed using estrogen receptor alpha(ERα)antagonist information collected from compound samples.We first utilized grey relation analysis(GRA)in conjunction with the random forest(RF)algorithm to identify the top 20 molecular descriptor variables that have the greatest influence on biological activity,and then we used Spearman correlation analysis to identify 16 independent variables.Second,a QSAR model of the compound were developed based on BP neural network(BPNN),genetic algorithm optimized BP neural network(GA-BPNN),and support vector regression(SVR).The BPNN,the SVR,and the logistic regression(LR)models were then used to identify and predict the ADMET properties of substances,with the prediction impacts of each model compared and assessed.The results reveal that a SVR model was used in QSAR quantitative prediction,and in the classification prediction of ADMET properties:the SVR model predicts the Caco-2 and hERG(human Ether-a-go-go Related Gene)properties,the LR model predicts the cytochrome P450 enzyme 3A4 subtype(CYP3A4)and Micronucleus(MN)properties,and the BPNN model predicts the Human Oral Bioavailability(HOB)properties.Finally,information entropy theory is used to validate the rationality of variable screening,and sensitivity analysis of the model demonstrates that the constructed model has high accuracy and stability,which can be used as a reference for screening probable active compounds and drug discovery.展开更多
基金Supported by the Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX24_0102)the China Scholarship Council Program(202406190114)。
文摘Studying the coupling coordination development of new energy vehicles(NEVs)and the ecological environment in China is helpful in promoting the development of NEVs in the country and is of great significance in promoting high-quality development of new energy in China.This paper constructs an evaluation index system for the development of NEVs and the ecological environment.It uses game theory combining weighting model,particle swarm optimized projection tracking evaluation model,coupling coordination degree model,and machine learning algorithms to calculate and analyze the level of coupling coordination development of NEVs and the ecological environment in China from 2010 to 2021,and identifies the driving factors.The research results show that:(i)From 2010 to 2021,the development index of NEVs in China has steadily increased from 0.085 to 0.634,while the ecological environment level index significantly rose from 0.170 to 0.884,reflecting the continuous development of China in both NEVs and the ecological environment.(ii)From 2010 to 2012,the two systems—new energy vehicle(NEV)development and the ecological environment—were in a period of imbalance and decline.From 2013 to 2016,they underwent a transition period,and from 2017 to 2021,they entered a period of coordinated development showing a trend of benign and continuous improvement.By 2021,they reached a good level of coordination.(iii)Indicators such as the number of patents granted for NEVs,water consumption per unit of GDP,and energy consumption per unit of GDP are the main driving factors affecting the coupling coordination development of NEVs and the ecological environment in China.
基金Supported by the Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX23_0082)
文摘Breast cancer is presently one of the most common malignancies worldwide,with a higher fatality rate.In this study,a quantitative structure-activity relationship(QSAR)model of compound biological activity and ADMET(Absorption,Distribution,Metabolism,Excretion,Toxicity)properties prediction model were performed using estrogen receptor alpha(ERα)antagonist information collected from compound samples.We first utilized grey relation analysis(GRA)in conjunction with the random forest(RF)algorithm to identify the top 20 molecular descriptor variables that have the greatest influence on biological activity,and then we used Spearman correlation analysis to identify 16 independent variables.Second,a QSAR model of the compound were developed based on BP neural network(BPNN),genetic algorithm optimized BP neural network(GA-BPNN),and support vector regression(SVR).The BPNN,the SVR,and the logistic regression(LR)models were then used to identify and predict the ADMET properties of substances,with the prediction impacts of each model compared and assessed.The results reveal that a SVR model was used in QSAR quantitative prediction,and in the classification prediction of ADMET properties:the SVR model predicts the Caco-2 and hERG(human Ether-a-go-go Related Gene)properties,the LR model predicts the cytochrome P450 enzyme 3A4 subtype(CYP3A4)and Micronucleus(MN)properties,and the BPNN model predicts the Human Oral Bioavailability(HOB)properties.Finally,information entropy theory is used to validate the rationality of variable screening,and sensitivity analysis of the model demonstrates that the constructed model has high accuracy and stability,which can be used as a reference for screening probable active compounds and drug discovery.