This paper investigates the adaptive stabilization for a class of uncertain PDE-ODE cascaded systems. Remarkably, the PDE subsystem allows unknown control coefficient and spatially varying parameter, and only its one ...This paper investigates the adaptive stabilization for a class of uncertain PDE-ODE cascaded systems. Remarkably, the PDE subsystem allows unknown control coefficient and spatially varying parameter, and only its one boundary value is measurable. This renders the system in question more general and practical, and the control problem more challenging. To solve the problem,an invertible transformation is first introduced to change the system into an observer canonical form,from which a couple of filters are constructed to estimate the unmeasurable states. Then, by adaptive technique and infinite-dimensional backstepping method, an adaptive controller is constructed which guarantees that all states of the resulting closed-loop system are bounded while the original system states converging to zero. Finally, a numerical simulation is provided to illustrate the effectiveness of the proposed method.展开更多
基金supported by the National Natural Science Foundations of China under Grant Nos.61821004,61873146 and 61773332the Special Fund of Postdoctoral Innovation Projects in Shandong Province under Grant No.201703012。
文摘This paper investigates the adaptive stabilization for a class of uncertain PDE-ODE cascaded systems. Remarkably, the PDE subsystem allows unknown control coefficient and spatially varying parameter, and only its one boundary value is measurable. This renders the system in question more general and practical, and the control problem more challenging. To solve the problem,an invertible transformation is first introduced to change the system into an observer canonical form,from which a couple of filters are constructed to estimate the unmeasurable states. Then, by adaptive technique and infinite-dimensional backstepping method, an adaptive controller is constructed which guarantees that all states of the resulting closed-loop system are bounded while the original system states converging to zero. Finally, a numerical simulation is provided to illustrate the effectiveness of the proposed method.