Objective Despite the potential therapeutic approaches of bone marrow-derived mesenchymal stem cells(BMSCs)in orthopaedic,their applications are hampered by harsh oxidative stress conditions after transplantation.In t...Objective Despite the potential therapeutic approaches of bone marrow-derived mesenchymal stem cells(BMSCs)in orthopaedic,their applications are hampered by harsh oxidative stress conditions after transplantation.In this study,the antiapoptotic and anti-oxidative properties of lithospermic acid(LSA)on BMSCs exposed to hydrogen peroxide(H2O2)were investigated.Methods In the present study,we used H2O2 to induce oxidative injury on BMSCs.Reactive oxygen species(ROS)staining and superoxide dismutase(SOD)assay were performed.The expression levels of phosphorylated(p)-Akt,Bcl-2-associated X protein(Bax)and B-cell lymphoma 2(Bcl-2)were measured by Western blotting.Results LSA can significantly reduce H2O2-induced chromatin condensation and intracellular ROS levels,enhance the activity of SOD.Moreover,it can alleviate H2O2-induced apoptosis by upregulating Bcl-2 and p-Akt,down-regulating Bax,which was blocked by the PI3K inhibitor,LY294002.Conclusions Our results demonstrated that pretreatment with LSA could attenuate oxidative stress-induced apoptosis in BMSCs,which may be related with anti-oxidant properties and partly via modulating PI3K/Akt pathway,suggesting that pharmacologically manipulating BMSCs with LSA could be a promising drug to increase cell survival for BMSCs transplantation in musculoskeletal disorders of orthopaedic.展开更多
基金the funding support from the National Natural Science Foundation of China(No.81574005and No.81874478)
文摘Objective Despite the potential therapeutic approaches of bone marrow-derived mesenchymal stem cells(BMSCs)in orthopaedic,their applications are hampered by harsh oxidative stress conditions after transplantation.In this study,the antiapoptotic and anti-oxidative properties of lithospermic acid(LSA)on BMSCs exposed to hydrogen peroxide(H2O2)were investigated.Methods In the present study,we used H2O2 to induce oxidative injury on BMSCs.Reactive oxygen species(ROS)staining and superoxide dismutase(SOD)assay were performed.The expression levels of phosphorylated(p)-Akt,Bcl-2-associated X protein(Bax)and B-cell lymphoma 2(Bcl-2)were measured by Western blotting.Results LSA can significantly reduce H2O2-induced chromatin condensation and intracellular ROS levels,enhance the activity of SOD.Moreover,it can alleviate H2O2-induced apoptosis by upregulating Bcl-2 and p-Akt,down-regulating Bax,which was blocked by the PI3K inhibitor,LY294002.Conclusions Our results demonstrated that pretreatment with LSA could attenuate oxidative stress-induced apoptosis in BMSCs,which may be related with anti-oxidant properties and partly via modulating PI3K/Akt pathway,suggesting that pharmacologically manipulating BMSCs with LSA could be a promising drug to increase cell survival for BMSCs transplantation in musculoskeletal disorders of orthopaedic.