A novel thermo-responsive hydrogel column, featured with both ends of linear poly(N- isopropylacrylarnide) (PNIPAM) chains being grafted onto cross-linked PNIPAM chains, was reported. The laterally sandwich-typed ...A novel thermo-responsive hydrogel column, featured with both ends of linear poly(N- isopropylacrylarnide) (PNIPAM) chains being grafted onto cross-linked PNIPAM chains, was reported. The laterally sandwich-typed hydrogel columns were fabricated by radical polymerization in a three-step process using a method of ice-melting synthesis. The initiating path, morphology and thermoresponsive characteristics of the prepared hydrogel columns were experimentally studied. The results show that the hydrogel column obtained by the initiator inside part has more quick swelling and deswelling rates responsing to temperature cycling than other hydrogels owing to linear PNIPAM chains to form supermacroporous structure. The proposed hydrogel structure provide a new mode of the phase transition behavior for thermo-sensitive "smart" or "intelligent" monodisperse micro-actuators, which is highly attractive for targeting drug delivery systems, chemical separations, and sensors and so on.展开更多
The aim of this study was to fabricate composite gel beads based on natural polysaccharides. Hyaluronic acid(HA) and Chitosan(CS) were successfully admixed with Ca^2+/alginate(SA) gel system to produce SA/HA/CS...The aim of this study was to fabricate composite gel beads based on natural polysaccharides. Hyaluronic acid(HA) and Chitosan(CS) were successfully admixed with Ca^2+/alginate(SA) gel system to produce SA/HA/CS gel beads by dual crosslinking: the ionic gelation and the polyelectrolyte complexation. The preparation procedure was that the weight ratio of SA(2%, m/v) to HA(2%, m/v) was kept at 2:1, then the mixture was dripped into the Ca^2+ solution for ion-crosslinking, and finally polyelectrolyte crosslinked with 2% low molecular weight CS(LMW-CS) for 1.5 hours. The optimal formulation was achieved by adjusting the concentration and the weight ratio of SA, HA and LMW-CS. Due to the incorporation of HA and LMWCS, the swelling ratio of the beads at pH 7.4 was increased up to 120, and the time for the maximum swelling degree was prolonged to 7.5 h. The swelling behavior was obviously improved compared to the pure SA/Ca^2+ system. The preliminary results clearly suggest that the SA/HA/CS gel beads may be a potential candidate for biomedical delivery vehicles.展开更多
基金the National Natural Science Foundation of China (No.20976202)the Natural Science Foundation of Hubei Province (No.2009CDB161)
文摘A novel thermo-responsive hydrogel column, featured with both ends of linear poly(N- isopropylacrylarnide) (PNIPAM) chains being grafted onto cross-linked PNIPAM chains, was reported. The laterally sandwich-typed hydrogel columns were fabricated by radical polymerization in a three-step process using a method of ice-melting synthesis. The initiating path, morphology and thermoresponsive characteristics of the prepared hydrogel columns were experimentally studied. The results show that the hydrogel column obtained by the initiator inside part has more quick swelling and deswelling rates responsing to temperature cycling than other hydrogels owing to linear PNIPAM chains to form supermacroporous structure. The proposed hydrogel structure provide a new mode of the phase transition behavior for thermo-sensitive "smart" or "intelligent" monodisperse micro-actuators, which is highly attractive for targeting drug delivery systems, chemical separations, and sensors and so on.
基金Funded by the National Natural Science Foundation of China(No.81401510)
文摘The aim of this study was to fabricate composite gel beads based on natural polysaccharides. Hyaluronic acid(HA) and Chitosan(CS) were successfully admixed with Ca^2+/alginate(SA) gel system to produce SA/HA/CS gel beads by dual crosslinking: the ionic gelation and the polyelectrolyte complexation. The preparation procedure was that the weight ratio of SA(2%, m/v) to HA(2%, m/v) was kept at 2:1, then the mixture was dripped into the Ca^2+ solution for ion-crosslinking, and finally polyelectrolyte crosslinked with 2% low molecular weight CS(LMW-CS) for 1.5 hours. The optimal formulation was achieved by adjusting the concentration and the weight ratio of SA, HA and LMW-CS. Due to the incorporation of HA and LMWCS, the swelling ratio of the beads at pH 7.4 was increased up to 120, and the time for the maximum swelling degree was prolonged to 7.5 h. The swelling behavior was obviously improved compared to the pure SA/Ca^2+ system. The preliminary results clearly suggest that the SA/HA/CS gel beads may be a potential candidate for biomedical delivery vehicles.