BACKGROUND Mesenchymal stem cells(MSCs)are promising candidates for regenerative therapy due to their self-renewal capability,multilineage differentiation potential,and immunomodulatory effects.The molecular character...BACKGROUND Mesenchymal stem cells(MSCs)are promising candidates for regenerative therapy due to their self-renewal capability,multilineage differentiation potential,and immunomodulatory effects.The molecular characteristics of MSCs are influenced by their location.Recently,epidural fat(EF)and EF-derived MSCs(EF-MSCs)have garnered attention due to their potential benefits to the spinal microenvironment and their high expression of neural SC markers.However,their clinical applications are limited due to cell senescence and limited accessibility of EF.Although many studies have attempted to establish an immortalized,stable SC line,the characteristics of immortalized EF-MSCs remain to be clarified.AIM To establish and analyze stable immortalized EF-MSCs.METHODS The phenotypes of EF-MSCs were analyzed using optical microscopy.Cell immortalization was performed using lentiviral vectors.The biomolecular characteristics of the cells were analyzed by immunoblotting,quantitative PCR,and proteomics.RESULTS The immortalized EF-MSCs demonstrated a significantly extended lifespan compared to the control group,with well-preserved adipogenic potential and SC surface marker expression.Introduction of human telomerase reverse transcriptase genes markedly increased the lifespan of EF-MSCs.Proteomics analysis revealed substantial increase in the expression of DNA replication pathway components in immortalized EF-MSCs.CONCLUSION Immortalized EF-MSCs exhibited significantly enhanced proliferative capacity,retained adipogenic potential,and upregulated the expression of DNA replication pathway components.展开更多
What is spinal cord injury:Spinal cord injury(SCI)is the damage to the structure of the bundles of cells and nerves that communicate signals from the brain to the body and extremities.The pathology of SCI includes bot...What is spinal cord injury:Spinal cord injury(SCI)is the damage to the structure of the bundles of cells and nerves that communicate signals from the brain to the body and extremities.The pathology of SCI includes both primary and secondary injuries(Morales et al.,2016).Physical forces such as compression,shearing,contusion,and tearing are major causes of primary injury in SCI.There are two main processes in primary injury:acute and subacute.The acute phase includes traumatic disruption of axons and hemorrhage of the blood vessels around the spinal cord.Hemorrhagic injury to the vessels can lead to increased edema within the neural and cord tissues,susceptibility to infiltration by microglia and astrocytes,excitotoxicity,and demyelination.Similarly,disruption of the blood-spinal cord barrier results in the release of inflammatory cytokines from specific cells and vessels.展开更多
文摘BACKGROUND Mesenchymal stem cells(MSCs)are promising candidates for regenerative therapy due to their self-renewal capability,multilineage differentiation potential,and immunomodulatory effects.The molecular characteristics of MSCs are influenced by their location.Recently,epidural fat(EF)and EF-derived MSCs(EF-MSCs)have garnered attention due to their potential benefits to the spinal microenvironment and their high expression of neural SC markers.However,their clinical applications are limited due to cell senescence and limited accessibility of EF.Although many studies have attempted to establish an immortalized,stable SC line,the characteristics of immortalized EF-MSCs remain to be clarified.AIM To establish and analyze stable immortalized EF-MSCs.METHODS The phenotypes of EF-MSCs were analyzed using optical microscopy.Cell immortalization was performed using lentiviral vectors.The biomolecular characteristics of the cells were analyzed by immunoblotting,quantitative PCR,and proteomics.RESULTS The immortalized EF-MSCs demonstrated a significantly extended lifespan compared to the control group,with well-preserved adipogenic potential and SC surface marker expression.Introduction of human telomerase reverse transcriptase genes markedly increased the lifespan of EF-MSCs.Proteomics analysis revealed substantial increase in the expression of DNA replication pathway components in immortalized EF-MSCs.CONCLUSION Immortalized EF-MSCs exhibited significantly enhanced proliferative capacity,retained adipogenic potential,and upregulated the expression of DNA replication pathway components.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.2022R1C1C1005410)(to GWL).
文摘What is spinal cord injury:Spinal cord injury(SCI)is the damage to the structure of the bundles of cells and nerves that communicate signals from the brain to the body and extremities.The pathology of SCI includes both primary and secondary injuries(Morales et al.,2016).Physical forces such as compression,shearing,contusion,and tearing are major causes of primary injury in SCI.There are two main processes in primary injury:acute and subacute.The acute phase includes traumatic disruption of axons and hemorrhage of the blood vessels around the spinal cord.Hemorrhagic injury to the vessels can lead to increased edema within the neural and cord tissues,susceptibility to infiltration by microglia and astrocytes,excitotoxicity,and demyelination.Similarly,disruption of the blood-spinal cord barrier results in the release of inflammatory cytokines from specific cells and vessels.