Previous studies have revealed that ammonia nitrogen has several adverse effects on clam Ruditapes philippinarum.However,knowledge is lacking regarding the related proteins involved in the toxicological responses,whic...Previous studies have revealed that ammonia nitrogen has several adverse effects on clam Ruditapes philippinarum.However,knowledge is lacking regarding the related proteins involved in the toxicological responses,which is vital to elucidate the underlying mechanism of ammonia nitrogen.In this study,clams R.philippinarum were exposed to ammonia nitrogen for 21 d at two environmentally relevant concentrations.The tandem mass tags approach(TMT)was applied to assay the differentially expressed proteins(DEPs)in clam gill tissues on the 3 rd and 21 st day.Finally,a total of 7263 proteins were identified.Bioinformatics analyses revealed that clam protein profiles changed in dose-and time dependent manner after ammonia nitrogen exposure.We inferred that the clams may face heavy challenges after ammonia exposure,such as unbalanced gender ratio,lysosomal disease,energy lack,neurological disorders,altered glutamine metabolism,increased lipid synthesis,and impaired immunity.Variation profiles of enzyme activities of glutaminase and glutamine synthase provided direct evidence to verify the related inference from proteome data.Most of the inferred toxic effects merit further study.This study identified important proteins related to ammonia nitrogen toxicity in the clam and indicated the severe stress of marine ammonia pollution on the healthy development of mollusc aquaculture.展开更多
Multifunctional non-precious catalysts for hydrogen/oxygen evolution reaction(HER/OER) and oxygen reduction reaction(ORR) constitute the bottleneck in the applications in electrochemical overall water splitting(OWS) a...Multifunctional non-precious catalysts for hydrogen/oxygen evolution reaction(HER/OER) and oxygen reduction reaction(ORR) constitute the bottleneck in the applications in electrochemical overall water splitting(OWS) and Zn-air batteries. Herein, a trifunctional electrocatalyst of urchin-like Al,P-codoped Co3O4 microspheres supported on Ni foam(denoted as AP-CONPs/NF) was fabricated via a hydrothermal process and subsequent low-temperature annealing and phosphorization, exhibiting enhanced OER, HER and ORR activities compared with single-doped and undoped samples. Their surface self-organized microstructure and excellent "superaerophobic" feature make a high bubble repellency, which boost diffusion of reactants and electrolyte-electrode intimate contact. The codoping of Al and P elements into Co3O4 betters right the balance among surface chemical state, the increased oxygen vacancies and the promoted charge transfer. Encouraged by these synergistic advantages, the AP-CONPs/NF was further employed as excellent bifunctional electrodes for the OWS(low cell voltage of 1.57 V at 10 mA cm-2) and as air cathode for rechargeable Zn-air batteries(high power density of 89.1 mW cm-2), which demonstrates a great feasibility for practical applications.展开更多
TS-2 microspheres,consisting of intergrown primary nanocrystals,was prepared by controlling the synthetic parameters.The effects of the amount of quaternary ammonium cations as structure-directing agent,H2O/Si ratio,t...TS-2 microspheres,consisting of intergrown primary nanocrystals,was prepared by controlling the synthetic parameters.The effects of the amount of quaternary ammonium cations as structure-directing agent,H2O/Si ratio,the presence of alcohol and the temperature were carefully investigated on the crystallization process.The high alkalinity was proved to be highly important for the preservation of the microsphere morphology initially formed,due to the unique intergrown stacking style.An alkali treatment with the aqueous solution of structure-directing agent,organic amine and ammonium salt and subsequent Na+ion-exchange were performed to enhance the catalytic activity of TS-2 microsphere in the cyclohexanone ammoximation reactions,with both the conversion and selectivity higher than 99%.In the continuous reaction,the TS-2 microspheres exhibited to be durable catalyst with potential application in industrial ammoximation processes.展开更多
Plants initiate leaf senescence to reallocate energy and nutrients from aging to developing tissues for optimizing growth fitness and reproduction at the end of the growing season or under stress. Jasmonate (JA), a ...Plants initiate leaf senescence to reallocate energy and nutrients from aging to developing tissues for optimizing growth fitness and reproduction at the end of the growing season or under stress. Jasmonate (JA), a lipid-derived phytohormone, is known as an important endogenous signal in inducing leaf senescence. However, whether and how the circadian clock gates JA signaling to induce leaf senescence in plants remains elusive. In this study, we show that Evening Complex (EC), a core component of the circadian oscillator, negatively regulates leaf senescence in Arabidopsis thaliana. Transcriptomic profiling analysis reveals that EC is closely involved in JA signaling and response, consistent with accelerated leaf senescence unanimously displayed by EC mutants upon JA induction. We found that EC directly binds the promoter of MYC2, which encodes a key activator of JA-induced leaf senescence, and represses its expression. Ge- netic analysis further demonstrated that the accelerated JA-induced leaf senescence in EC mutants is abrogated by myc2 myc3 myc4 triple mutation. Collectively, these results reveal a critical molecular mechanism illustrating how the core component of the circadian clock gates JA signaling to regulate leaf senescence.展开更多
In this Web 2.0 era,various and massive tourist experiences and reviews presented on social networks have become important information for tourism research.In this paper,we apply social media to explore and study the ...In this Web 2.0 era,various and massive tourist experiences and reviews presented on social networks have become important information for tourism research.In this paper,we apply social media to explore and study the tourism industry of Bamako,Mali.Over 2000 reviewers and their comments about Bamako’s hotels and restaurants from TripAdvisor and Facebook were collected.Also,we integrate official tourism statistic data and field surveying data into the online review dataset.Data mining and statistic method are used to analyze the data for purpose of exploring the characteristics about tourism industry in Bamako.And we find that:(i)Most tourists are coming to Bamako for business purpose,and they incline to choose the hotels with better service and security condition;(ii)Comments on social media would greatly affect travelers’choice on hotels;(iii)Most travelers are satisfied about Bamako’s accommodation services.展开更多
Light has been sought and explored by human since ancient times.As the most important form of light,fluorescence is significant to applications in bioimaging and optoelectronic devices.However,fluorescence quenching p...Light has been sought and explored by human since ancient times.As the most important form of light,fluorescence is significant to applications in bioimaging and optoelectronic devices.However,fluorescence quenching problem constitutes a serious bottleneck in materials creation.Inspired from the core–shell structure in nature,we report an effective strategy to overcome this long-standing problem by utilizing a molecular core–shell structure.With an emissive core and multifunctional shell fragments,these compounds show aggregation-induced delayed fluorescence(AIDF)properties by restricting singlet oxygen(^(1)O_(2))generation and suppressing the triplet–triplet annihilation(TTA).Protected by the functional shell,the aggregation-induced emission luminogens(AIEgens)exhibit strong emission with high photoluminescent quantum yield and exciton utilization.Furthermore,because the shell materials can form exciplex with electron-transport materials,the fully solution-processed organic light-emitting diodes(OLEDs)based on these core–shell materials show low turnon voltages,excellent device performance with current efficiency of 61.4 cd A–1 and power efficiency of 42.8 lm W–1,which is a record-breaking efficiency based on all-solution processed organic multilayer systems among the AIE-OLEDs so far.This simple visualization strategy based on molecular core–shell structure provides a promising platform for AIEgens used in the fully wet-processed optoelectronic field.展开更多
基金Supported by the Natural Science Foundation of Shandong Province(No.ZR 2023 MD 059)the National Natural Science Foundation of China(No.41876135)。
文摘Previous studies have revealed that ammonia nitrogen has several adverse effects on clam Ruditapes philippinarum.However,knowledge is lacking regarding the related proteins involved in the toxicological responses,which is vital to elucidate the underlying mechanism of ammonia nitrogen.In this study,clams R.philippinarum were exposed to ammonia nitrogen for 21 d at two environmentally relevant concentrations.The tandem mass tags approach(TMT)was applied to assay the differentially expressed proteins(DEPs)in clam gill tissues on the 3 rd and 21 st day.Finally,a total of 7263 proteins were identified.Bioinformatics analyses revealed that clam protein profiles changed in dose-and time dependent manner after ammonia nitrogen exposure.We inferred that the clams may face heavy challenges after ammonia exposure,such as unbalanced gender ratio,lysosomal disease,energy lack,neurological disorders,altered glutamine metabolism,increased lipid synthesis,and impaired immunity.Variation profiles of enzyme activities of glutaminase and glutamine synthase provided direct evidence to verify the related inference from proteome data.Most of the inferred toxic effects merit further study.This study identified important proteins related to ammonia nitrogen toxicity in the clam and indicated the severe stress of marine ammonia pollution on the healthy development of mollusc aquaculture.
基金the National Natural Science Foundation of China(21421001,21573115,21875118)the Natural Science Foundation of Tianjin(17JCYBJC17100,19JCZDJC37700)。
文摘Multifunctional non-precious catalysts for hydrogen/oxygen evolution reaction(HER/OER) and oxygen reduction reaction(ORR) constitute the bottleneck in the applications in electrochemical overall water splitting(OWS) and Zn-air batteries. Herein, a trifunctional electrocatalyst of urchin-like Al,P-codoped Co3O4 microspheres supported on Ni foam(denoted as AP-CONPs/NF) was fabricated via a hydrothermal process and subsequent low-temperature annealing and phosphorization, exhibiting enhanced OER, HER and ORR activities compared with single-doped and undoped samples. Their surface self-organized microstructure and excellent "superaerophobic" feature make a high bubble repellency, which boost diffusion of reactants and electrolyte-electrode intimate contact. The codoping of Al and P elements into Co3O4 betters right the balance among surface chemical state, the increased oxygen vacancies and the promoted charge transfer. Encouraged by these synergistic advantages, the AP-CONPs/NF was further employed as excellent bifunctional electrodes for the OWS(low cell voltage of 1.57 V at 10 mA cm-2) and as air cathode for rechargeable Zn-air batteries(high power density of 89.1 mW cm-2), which demonstrates a great feasibility for practical applications.
文摘TS-2 microspheres,consisting of intergrown primary nanocrystals,was prepared by controlling the synthetic parameters.The effects of the amount of quaternary ammonium cations as structure-directing agent,H2O/Si ratio,the presence of alcohol and the temperature were carefully investigated on the crystallization process.The high alkalinity was proved to be highly important for the preservation of the microsphere morphology initially formed,due to the unique intergrown stacking style.An alkali treatment with the aqueous solution of structure-directing agent,organic amine and ammonium salt and subsequent Na+ion-exchange were performed to enhance the catalytic activity of TS-2 microsphere in the cyclohexanone ammoximation reactions,with both the conversion and selectivity higher than 99%.In the continuous reaction,the TS-2 microspheres exhibited to be durable catalyst with potential application in industrial ammoximation processes.
文摘Plants initiate leaf senescence to reallocate energy and nutrients from aging to developing tissues for optimizing growth fitness and reproduction at the end of the growing season or under stress. Jasmonate (JA), a lipid-derived phytohormone, is known as an important endogenous signal in inducing leaf senescence. However, whether and how the circadian clock gates JA signaling to induce leaf senescence in plants remains elusive. In this study, we show that Evening Complex (EC), a core component of the circadian oscillator, negatively regulates leaf senescence in Arabidopsis thaliana. Transcriptomic profiling analysis reveals that EC is closely involved in JA signaling and response, consistent with accelerated leaf senescence unanimously displayed by EC mutants upon JA induction. We found that EC directly binds the promoter of MYC2, which encodes a key activator of JA-induced leaf senescence, and represses its expression. Ge- netic analysis further demonstrated that the accelerated JA-induced leaf senescence in EC mutants is abrogated by myc2 myc3 myc4 triple mutation. Collectively, these results reveal a critical molecular mechanism illustrating how the core component of the circadian clock gates JA signaling to regulate leaf senescence.
基金This work was supported by the National Key R&D Program of China(grant number 2017YFB0503700)the National Nature Science Foundation of China(grant number 41501439).
文摘In this Web 2.0 era,various and massive tourist experiences and reviews presented on social networks have become important information for tourism research.In this paper,we apply social media to explore and study the tourism industry of Bamako,Mali.Over 2000 reviewers and their comments about Bamako’s hotels and restaurants from TripAdvisor and Facebook were collected.Also,we integrate official tourism statistic data and field surveying data into the online review dataset.Data mining and statistic method are used to analyze the data for purpose of exploring the characteristics about tourism industry in Bamako.And we find that:(i)Most tourists are coming to Bamako for business purpose,and they incline to choose the hotels with better service and security condition;(ii)Comments on social media would greatly affect travelers’choice on hotels;(iii)Most travelers are satisfied about Bamako’s accommodation services.
基金National Natural Science Foundation of China,Grant/Award Numbers:21875036,22135004Open Fund of theKeyLab of Organic Optoelec-tronics&Molecular EngineeringInnovation and Technology Commission,Grant/Award Number:ITC-CNERC14SC01。
文摘Light has been sought and explored by human since ancient times.As the most important form of light,fluorescence is significant to applications in bioimaging and optoelectronic devices.However,fluorescence quenching problem constitutes a serious bottleneck in materials creation.Inspired from the core–shell structure in nature,we report an effective strategy to overcome this long-standing problem by utilizing a molecular core–shell structure.With an emissive core and multifunctional shell fragments,these compounds show aggregation-induced delayed fluorescence(AIDF)properties by restricting singlet oxygen(^(1)O_(2))generation and suppressing the triplet–triplet annihilation(TTA).Protected by the functional shell,the aggregation-induced emission luminogens(AIEgens)exhibit strong emission with high photoluminescent quantum yield and exciton utilization.Furthermore,because the shell materials can form exciplex with electron-transport materials,the fully solution-processed organic light-emitting diodes(OLEDs)based on these core–shell materials show low turnon voltages,excellent device performance with current efficiency of 61.4 cd A–1 and power efficiency of 42.8 lm W–1,which is a record-breaking efficiency based on all-solution processed organic multilayer systems among the AIE-OLEDs so far.This simple visualization strategy based on molecular core–shell structure provides a promising platform for AIEgens used in the fully wet-processed optoelectronic field.