Au is considered as one of the most promising catalysts for nitrogen reduction reaction(NRR),however maximizing the activity utilization rate of Au and understanding the synergistic effects between Au and carriers pos...Au is considered as one of the most promising catalysts for nitrogen reduction reaction(NRR),however maximizing the activity utilization rate of Au and understanding the synergistic effects between Au and carriers pose ongoing challenges.Herein,we systematically explore the synergistic catalytic effect of incorporating Au with boron clusters for accelerating NRR kinetics.An in-situ abinitio strategy is employed to construct B-doped Au nanoparticles(2-6 nm in diameter)loaded on BO_(x) substrates(AuBO_(x)),in which B not only modulates the surface electronic structure of Au but also forms strong coupling interactions to stabilize the nanoparticles.The electrochemical results show that Au-BO_(x) possesses excellent NRR activity(NH_(3) yield of 48.52μg h^(-1)mg_(cat)^(-1),Faraday efficiency of 56.18%),and exhibits high stability and reproducibility throughout the electrocatalytic NRR process.Theoretical calculations reveal that the introduction of B induces the formation of both Au dangling bond and Au-B coupling bond.which considerably facilitates the hydrogenation of~*N_(2)^(-)~*NH_(3).The present work provides a new avenue for the preparation of metal-boron materials achieved by one-step reduction and doping process,utilizing boron clusters as reducing and stabilizing agents.展开更多
The lamellar hydrates of CAC were designed with the introduction of nano CaCO_(3)or Mg-Al hydrotalcite(M-A-H),and the effects on the green strength,pore structures,and high-temperature fracture behavior of alumina-spi...The lamellar hydrates of CAC were designed with the introduction of nano CaCO_(3)or Mg-Al hydrotalcite(M-A-H),and the effects on the green strength,pore structures,and high-temperature fracture behavior of alumina-spinel castables were investigated.The results show that nano CaCO_(3)or M-A-H stimulates rapidly the hydration of CAC and the formation of lamellar C_(4)AcH_(11)or coexistence of C_(2)AH_(8)and C_(4)AcH_(11)at 25℃.The formation of lamellar hydrates can contribute to a more complicated pore structure,especially in the range of 400-2000 nm.Meanwhile,the incorporation of well-distributed CaO or MgO sources from nano CaCO_(3)or M-A-H also regulates the distribution of CA_(6)and spinel(pre-formed and in-situ).Consequently,the optimized microstructure and complicated pore structure can induce the deflection and bridging of cracks,thus facilitating the consumption of fracture energy and enhancing the resistance to thermal stress damage.展开更多
Background Non-suicidal self-injury (NSSI) behaviour is very common among adolescents. Its prevalence and behavioural characteristics may vary according to regional and cultural differences. Investigation of NSSI loca...Background Non-suicidal self-injury (NSSI) behaviour is very common among adolescents. Its prevalence and behavioural characteristics may vary according to regional and cultural differences. Investigation of NSSI locations and diagnosis of adolescents with NSSI are relatively lacking in China. Aims The study objective was to determine the prevalence and features of NSSI among middle school students in Shanghai. Methods The participants were from grade 6 to 8 selected from three junior schools in Jing’an District. Consenting students completed the Ottawa Self-Injury Inventory to determine the prevalence and characteristics of NSSI. Those who indicated NSSI within the past month were administered the Mini-International Neuropsychiatric Interview for Children and Adolescents to assess for emotional disorders. Result The result shows 510 participants (21.7%;mean age 13.51 (0.97) years old;56.7% female) reported at least one instance of NSSI during the previous 12 months. NSSI was significantly more common in girls than boys (24.9% vs 18.5%;χ^2=14.03, p=0.00). Commonly reported reasons for NSSI were for internal and external emotion regulation (87.9%, 82.3%) and social influence (57.8%). Anxiety disorders were the most common (28.9%) disorder associated with NSSI. Conclusion The rate of NSSI of middle school students in Shanghai inner bound is similar to those reported in North American and European youth. It is essential that school mental health professionals are aware of how to manage NSSI within the school setting.展开更多
Homoeostasis depends on the close connection and intimate molecular exchange between extracellular, intracellular and intercellular networks. Intercellular communication is largely mediated by gap junctions(GJs), a ty...Homoeostasis depends on the close connection and intimate molecular exchange between extracellular, intracellular and intercellular networks. Intercellular communication is largely mediated by gap junctions(GJs), a type of specialized membrane contact composed of variable number of channels that enable direct communication between cells by allowing small molecules to pass directly into the cytoplasm of neighbouring cells. Although considerable evidence indicates that gap junctions contribute to the functions of many organs, such as the bone, intestine, kidney, heart, brain and nerve, less is known about their role in oral development and disease. In this review, the current progress in understanding the background of connexins and the functions of gap junctions in oral development and diseases is discussed. The homoeostasis of tooth and periodontal tissues, normal tooth and maxillofacial development, saliva secretion and the integrity of the oral mucosa depend on the proper function of gap junctions.Knowledge of this pattern of cell–cell communication is required for a better understanding of oral diseases. With the everincreasing understanding of connexins in oral diseases, therapeutic strategies could be developed to target these membrane channels in various oral diseases and maxillofacial dysplasia.展开更多
Gap junction(GJ)has been indicated to have an intimate correlation with adhesion junction.However,the direct interaction between them partially remains elusive.In the current study,we aimed to elucidate the role of N-...Gap junction(GJ)has been indicated to have an intimate correlation with adhesion junction.However,the direct interaction between them partially remains elusive.In the current study,we aimed to elucidate the role of N-cadherin,one of the core components in adhesion junction,in mediating connexin 43,one of the functional constituents in gap junction,via transforming growth factor-β1(TGF-β1)induction in osteoblasts.We first elucidated the expressions of N-cadherin induced by TGF-β1 and also confirmed the upregulation of Cx43,and the enhancement of functional gap junctional intercellular communication(GJIC)triggered by TGF-β1 in both primary osteoblasts and MC3T3 cell line.Colocalization analysis and Co-IP experimentation showed that N-cadherin interacts with Cx43 at the site of cell–cell contact.Knockdown of N-cadherin by siRNA interference decreased the Cx43 expression and abolished the promoting effect of TGF-β1 on Cx43.Functional GJICs in living primary osteoblasts and MC3T3 cell line were also reduced.TGF-β1-induced increase in N-cadherin and Cx43 was via Smad3 activation,whereas knockdown of Smad3 signaling by using siRNA decreased the expressions of both N-cadherin and Cx43.Overall,these data indicate the direct interactions between N-cadherin and Cx43,and reveal the intervention of adhesion junction in functional gap junction in living osteoblasts.展开更多
Intensive soil tillage is a significant factor in soil organic matter decline in cultivated soils. Both cultivation abandonment and foregoing tillage have been encouraged in the past 30 years to reduce greenhouse gas ...Intensive soil tillage is a significant factor in soil organic matter decline in cultivated soils. Both cultivation abandonment and foregoing tillage have been encouraged in the past 30 years to reduce greenhouse gas emissions and soil erosion. However, the dynamic processes of soil organic carbon (SOC) in areas of either continuous cultivation or abandonment remain unclear and inconsistent.Our aims were to assess and model the dynamic processes of SOC under continuous tillage and after cultivation abandonment in the black soil of Northeast China. Soil profiles were collected of cultivated or abandoned land with cultivation history of 0–100 years. An isotope mass balance equation was used to calculate the proportion of SOC derived from corn debris (C_4) and from natural vegetation (C_3) to deduce the dynamic process. Approximately 40% of SOC in the natural surface soil (0–10 cm) was eroded in the first 5 years of cultivation, increasing to about 75% within 40 years, before a slow recovery. C_4 above 30 cm soil depth increased by 4.5%–5% or 0.11–0.12 g·kg^(-1) on average per year under continuous cultivation, while it decreased by approximately 0.34% annually in the surface soil after cultivation abandonment.The increase in the percentage of C_4 was fitted to a linear equation with given intercepts in the upper 30 cm of soil in cultivated land. A significant relationship between the change of C_4 and time was found only in the surface soil after abandonment of cultivation. These results demonstrate the loss and accumulation of corn-derived SOC in surface black soil of Northeast China under continuous tillage or cultivation abandonment.展开更多
The automation of traditional Chinese medicine(TCM)pharmaceuticals has driven the development of process analysis from offline to online.Most of common online process analytical technologies are based on spectroscopy,...The automation of traditional Chinese medicine(TCM)pharmaceuticals has driven the development of process analysis from offline to online.Most of common online process analytical technologies are based on spectroscopy,making the identification and quantification of specific ingredients still a challenge.Herein,we developed a quality control(QC)system for monitoring TCM pharmaceuticals based on paper spray ionization miniature mass spectrometry(mini-MS).It enabled real-time online qualitative and quantitative detection of target ingredients in herbal extracts using mini-MS without chromatographic separation for the first time.Dynamic changes of alkaloids in Aconiti Lateralis Radix Praeparata(Fuzi)during decoction were used as examples,and the scientific principle of Fuzi compatibility was also investigated.Finally,the system was verified to work stably at the hourly level for pilot-scale extraction.This mini-MS based online analytical system is expected to be further developed for QC applications in a wider range of pharmaceutical processes.展开更多
Chlorophylls and carotenoids are essential and bene fi cial substances for both plant and human health.Identifying the regulatory network of these pigments is necessary for improving fruit quality.In a previous study,...Chlorophylls and carotenoids are essential and bene fi cial substances for both plant and human health.Identifying the regulatory network of these pigments is necessary for improving fruit quality.In a previous study,we identi fi ed an R2R3-MYB transcription factor,SlMYB72,that plays an important role in chlorophyll and carotenoid metabolism in tomato fruit.Here,we demonstrated that the SlMYB72-interacting protein SlZHD17,which belongs to the zinc-fi nger homeodomain transcription factor family,also functions in chlorophyll and carotenoid metabolism.Silencing SIZHD 17 in tomato improved multiple bene fi cial agronomic traits,including dwar fi sm,accelerated fl owering,and earlier fruit harvest.More importantly,downregulating SIZHD17 in fruits resulted in larger chloroplasts and a higher chlorophyll content.Dual-luciferase,yeast one-hybrid and electrophoretic mobility shift assays clari fi ed that SlZHD17 regulates the chlorophyll biosynthesis gene SIPOR-B and chloroplast developmental regulator SITKN2 in a direct manner.Chlorophyll degradation and plastid transformation were also retarded after suppression of SIZHD17 in fruits,which was caused by the inhibition of SISGR1,a crucial factor in chlorophyll degradation.On the other hand,the expression of the carotenoid biosynthesis genes SIPSY1 and SIZISO was also suppressed and directly regulated by SlZHD17,which induced uneven pigmentation and decreased the lycopene content in fruits with SIZHD17 suppression at the ripe stage.Furthermore,the protein-protein interactions between SlZHD17 and other pigment regulators,including SlARF4,SlBEL11,and SlTAGL1,were also presented.This study provides new insight into the complex pigment regulatory network and provides new options for breeding strategies aiming to improve fruit quality.展开更多
We have developed a Si/graphene oxide electrode synthesized via ultrasonication-stirring method under alkaline condition. Scanning electron microscopy(SEM), transmission electron microscope(TEM), EDS dot-mapping and h...We have developed a Si/graphene oxide electrode synthesized via ultrasonication-stirring method under alkaline condition. Scanning electron microscopy(SEM), transmission electron microscope(TEM), EDS dot-mapping and high-resolution transmission electron microscopy(HRTEM) results show that Si particles are evenly dispersed on the graphene oxide sheets. The electrochemical performance was investigated by galvanostatic charge/discharge tests at room temperature. The results revealed that Si/graphene oxide electrode exhibited a high reversible capacity of 2825 mAh/g with a coulombic efficiency of 94.6%at 100 mA/g after 15 cycles and a capacity retention of 70.8% after 105 cycles at 4000 mA/g. These performance parameters show a great potential in the high-performance batteries application for portable electronics, electric vehicles and renewable energy storage.展开更多
Cynops orientalis(C.orientalis)has a pronounced ability to regenerate its spinal cord after injury.Thus,exploring the molecular mechanism of this process could provide new approaches for promoting mammalian spinal cor...Cynops orientalis(C.orientalis)has a pronounced ability to regenerate its spinal cord after injury.Thus,exploring the molecular mechanism of this process could provide new approaches for promoting mammalian spinal cord regeneration.In this study,we established a model of spinal cord thoracic transection injury in C.orientalis,which is an endemic species in China.We performed RNA sequencing of the contused axolotl spinal cord at two early time points after spinal cord injury–during the very acute stage(4 days)and the subacute stage(7 days)–and identified differentially expressed genes;additionally,we performed Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses,at each time point.Transcriptome sequencing showed that 13,059 genes were differentially expressed during C.orientalis spinal cord regeneration compared with uninjured animals,among which 4273 were continuously downregulated and 1564 were continuously up-regulated.Down-regulated genes were most enriched in the Gene Ontology term“multicellular organismal process”and in the ribosome pathway at 10 days following spinal cord injury.We found that multiple genes associated with energy metabolism were down-regulated and multiple genes associated with the lysosome were up-regulated after spinal cord injury,indicating the importance of low metabolic activity during wound healing.Immune response-associated pathways were activated during the early acute phase(4 days),while the expression of extracellular matrix proteins such as glycosaminoglycan and collagen,as well as tight junction proteins,was lower at 10 days post-spinal cord injury than 4 days post-spinal cord injury.However,compared with 4 days post-injury,at 10 days post-injury neuroactive ligand-receptor interactions were no longer down-regulated,up-regulated differentially expressed genes were enriched in pathways associated with cancer and the cell cycle,and SHH,VIM,and Sox2 were prominently up-regulated.Immunofluorescence staining showed that glial fibrillary acidic protein was up-regulated in axolotl ependymoglial cells after injury,similar to what is observed in mammalian astrocytes after spinal cord injury,even though axolotls do not form a glial scar during regeneration.We suggest that low intracellular energy production could slow the rapid amplification of ependymoglial cells,thereby inhibiting reactive gliosis,at early stages after spinal cord injury.Extracellular matrix degradation slows cellular responses,represses the expression of neurogenic genes,and reactivates a transcriptional program similar to that of embryonic neuroepithelial cells.These ependymoglial cells act as neural stem cells:they migrate and proliferate to repair the lesion and then differentiate to replace lost glial cells and neurons.This provides the regenerative microenvironment that allows axon growth after injury.展开更多
Western Subarctic Gyre(WSG),which possesses distinctive differences in oceanographic and biogeochemical processes,is situated in the northwest subarctic Pacific.The WSG is characterized by high nutrient and low chloro...Western Subarctic Gyre(WSG),which possesses distinctive differences in oceanographic and biogeochemical processes,is situated in the northwest subarctic Pacific.The WSG is characterized by high nutrient and low chlorophyll.We carried out a field investigation in this area in summer 2020 and performed microscopic observation,cytometric counting,and RuBisCO large subunit(rbc L)gene analysis to understand the community structure and spatial distribution of chromophytic phytoplankton better.Microscopic method revealed that total phytoplankton(>10μm,including Bacillariophyta,Dinoflagellata,Ochrophyta,and Chlorophyta)abundances ranged(0.6×10^(3))-(167.4×10^(3))cells/L with an increasing trend from south to north.Dinoflagellates and Pennatae diatoms dominated the phytoplankton assemblages in the southern and northern stations,respectively.Major chromophytic phytoplankton groups derived from rbc L genes included Haptophyta,Ochrophyta,Bacillariophyta,as well as rarely occurring groups,such as Xanthophyta,Cyanobacteria,Dinoflagellata,Rhodophyta,and Cryptophyta.At the phylum level,Haptophyta was the most abundant phylum,accounting for approximately 30.80%of the total obtained operational taxonomic units in all samples.Ochrophyta and Bacillariophyta were the second and third most abundant phylum,and their relative abundance was 20.26% and 19.60%,respectively.Further,redundancy analysis showed that high proportion of diatoms(e.g.,microscopic and rbc L methods)was positively correlated with nutrients(e.g.,dissolved inorganic nitrogen(DIN),dissolved inorganic phosphorous,and dissolved silicate(DSi))and negatively correlated with temperature and salinity.The proportion of Ochrophyta,Rhodophyta,and Cyanobateria identified by rbc L genes was positively correlated with salinity and temperature and showed negative correlation to nutrients.This work is the first molecular study of phytoplankton accomplished in the WSG,and our results show some discrepancies between morphological observation and rbc L gene sequences,which highlight the necessity of combining the microscopic and molecular methods to reveal the diversity of phytoplankton in marine environment.展开更多
The Western Subarctic Gyre(WSG)is one of the two gyre-systems in the subarctic North Pacific known for high nutrient and low-chlorophyll waters.However,the bacterioplankton in marine water of this area,either in terms...The Western Subarctic Gyre(WSG)is one of the two gyre-systems in the subarctic North Pacific known for high nutrient and low-chlorophyll waters.However,the bacterioplankton in marine water of this area,either in terms of the taxonomic composition or functional structure,remains relatively unexplored.A total of 22 sampling sites from two water layers(surface water,SW and 50-m layer water,FW)were collected in this area.The physiochemical parameters of waters,Synechococcus,and bacterial density,as well as the bacterioplankton community composition and distribution pattern,were analyzed.The nutrient concentrations of DIN,DIP,and DSi,Chl-a concentration,and the average abundance of heterobacteria in FW were higher than those in SW.However,temperature and the average abundance of Synechococcus and pico-eukaryotes were higher in SW.A total of 3269 OTUs were assigned,and 2123OTUs were commonly shared;moreover,similar alpha diversity patterns were observed in both SW and FW.The bacterioplankton community showed significantly obvious correlation with salinity,DIP,DIN,and Chl a in both SW and FW.Proteobacteria,Cyanobacteria,Bacteroidota,Actinobacteriota,and Firmicutes were the main phyla while Synechococcus_CC9902,Psychrobacter,and Sulfitobacter were the dominant genera in each sampling site.Most correlations that happened between the OTUs in the cooccurrence network were positive and inter-module.Higher edges and graph density were found in SW,indicating that more correlations occurred,and the community was more complex in SW.This study provided novel knowledge on the bacterioplankton community structure and the correlation characteristics in WSG.展开更多
The original fault data of oil immersed transformer often contains a large number of unnecessary attributes,which greatly increases the elapsed time of the algorithm and reduces the classification accuracy,leading to ...The original fault data of oil immersed transformer often contains a large number of unnecessary attributes,which greatly increases the elapsed time of the algorithm and reduces the classification accuracy,leading to the rise of the diagnosis error rate.Therefore,in order to obtain high quality oil immersed transformer fault attribute data sets,an improved imperialist competitive algorithm was proposed to optimize the rough set to discretize the original fault data set and the attribute reduction.The feasibility of the proposed algorithm was verified by experiments and compared with other intelligent algorithms.Results show that the algorithm was stable at the 27th iteration with a reduction rate of 56.25%and a reduction accuracy of 98%.By using BP neural network to classify the reduction results,the accuracy was 86.25%,and the overall effect was better than those of the original data and other algorithms.Hence,the proposed method is effective for fault attribute reduction of oil immersed transformer.展开更多
Fe_(3)GaTe_(2),a recently discovered van der Waals ferromagnetic crystal with the highest Curie temperature and strong perpendicular magnetic anisotropy among two-dimensional(2D)magnetic materials,has attracted signif...Fe_(3)GaTe_(2),a recently discovered van der Waals ferromagnetic crystal with the highest Curie temperature and strong perpendicular magnetic anisotropy among two-dimensional(2D)magnetic materials,has attracted significant attention and makes it a promising candidate for next-generation spintronic applications.Compared with Fe_(3)GeTe_(2),which has the similar crystal structure,the mechanism of the enhanced ferromagnetic properties in Fe_(3)GaTe_(2)is still unclear and needs to be investigated.Here,by using x-ray magnetic circular dichroism measurements,we find that both Ga and Te atoms contribute to the total magnetic moment of the system with antiferromagnetic coupling to Fe atoms.Our first-principles calculations reveal that Fe_(3)GaTe_(2)has van Hove singularities at the Fermi level in nonmagnetic state,resulting in the magnetic instability of the system and susceptibility to magnetic phase transitions.In addition,the calculation results about the density of states in ferromagnetic states of two materials suggest that the exchange interaction between Fe atoms is strengthened by replacing Ge atoms with Ga atoms.These findings indicate the increase of both the itinerate and local moments in Fe_(3)GaTe_(2)in view of Stoner and exchange interaction models,which results in the enhancement of the overall magnetism and a higher Curie temperature.Our work provides insight into the underlying mechanism of Fe_(3)GaTe_(2)’s remarkable magnetic properties and has important implications for searching 2D materials with expected magnetic properties in the future.展开更多
Seeking new order parameters and the related broken symmetry and studying their relationship with phase transition have been important topics in condensed matter physics.Here,by using spin-and angle-resolved photoemis...Seeking new order parameters and the related broken symmetry and studying their relationship with phase transition have been important topics in condensed matter physics.Here,by using spin-and angle-resolved photoemission spectroscopy,we confirm the helical spin texture caused by spin-layer locking in the nodal region in the cuprate superconductor Bi_(2)Sr_(2)CaCu_(2)O_(8+δ)and discover the anisotropy of spin polarizations at nodes alongΓ–X andΓ–Y directions.The breaking of C_(4)rotational symmetry in electronic spin texture may give deeper insights into understanding the ground state of cuprate superconductors.展开更多
This article presents simulation results on the effects of neutral gas flow for nanoparticle transport in atmospheric-pressure,radio-frequency,capacitively-coupled,and acetylene discharge.The acetylene gas is set to f...This article presents simulation results on the effects of neutral gas flow for nanoparticle transport in atmospheric-pressure,radio-frequency,capacitively-coupled,and acetylene discharge.The acetylene gas is set to flow into the chamber from the upper showerhead electrode.The internal energy of the gas medium therein is transferred into kinetic energy so the gas advection can be triggered.This is represented by the pressure volume work term of the gas energy converse equation.The gas advection leads to the gas temperature sink at the gas inlet,hence a large gas temperature gradient is formed.The thermophoresis relies on the gas temperature gradient,and causes the profile of nanoparticle density to vary from a double-peak structure to a single-peak one.The gas advection influences the properties of electron density and temperature as well and causes the drift-ambipolar mode profile of electron density asymmetric.In the bulk region,i.e.away from the inlet,the gas advection is more like one isovolumetric compression,which slightly increases the temperature of the gas medium at consuming its kinetic energy.展开更多
In order to analyze the spray characteristics of non-circular nozzle holes based on the air-assisted spray system, the spray characteristics of circular and non-circular nozzles were studied under the pressure of 0.2-...In order to analyze the spray characteristics of non-circular nozzle holes based on the air-assisted spray system, the spray characteristics of circular and non-circular nozzles were studied under the pressure of 0.2-0.6 MPa and the spray volume of 1000-5000 mL/h. Elliptical nozzle and triangular nozzle are classified as non-circular geometries. The spray cone angle was measured by processing the spray image captured by a CCD camera. The measured spray cone angles of the circular nozzles were analyzed, and the axis switching phenomenon of minor plane of elliptical nozzle was found during the test. Among the three shapes of nozzles, the elliptical nozzle had the largest spray cone angle, and the triangular nozzle had the smallest. The velocity field obtained depended on the PIV system. The results show that for axial velocity, elliptical orifice spray has greater kinetic energy and smaller droplet size under the same working parameters. Compared with the circular and elliptical nozzles, triangular orifice reached maximum spray velocity the fastest, but its velocity decay was the fastest. For radial velocity, away from the axis, the spray velocity of the elliptical orifice was less affected by the injection parameters, and the velocity was less than that of circular orifice and triangle orifice. Increasing air pressure will weaken radial propagation. The increase of liquid spraying rate had no remarkable effect on the increase of spraying rate. The results of particle size analysis show that the particle size of the non-circular orifice is reduced compared with that of the circular orifice, which promotes the breakup of droplets to a certain extent and enhances the atomization effect.展开更多
Background:As one of the most popular traditional Chinese medicines(TCMs)for the treatment of various liver diseases,virgate wormwood herb(Artemisia capillaris Thunb.)has a long application history in TCM practices.It...Background:As one of the most popular traditional Chinese medicines(TCMs)for the treatment of various liver diseases,virgate wormwood herb(Artemisia capillaris Thunb.)has a long application history in TCM practices.It has been well established that the chemical composition is responsible for the pronounced therapeutic spectrum of A.capillaris.Although they are comprehensive,the time-intensive liquid chromatography coupled to tandem mass spectrometry(LCeMS/MS)assays cannot fully satisfy the analytical measurement workload from many test samples.Direct infusion-MS/MS(DIeMS/MS)may be the optimal choice to achieve high-throughput analysis if the mass spectrometer can universally record MS2 spectra.Methods:According to the application of gas phase ion fractionation concept,the MS/MSALL program enables to gain MS2 spectrum for each nominal m/z value with a data-independent acquisition algorithm via segmenting the entire MS1 ion cohort into sequential ion pieces with 1 Da width,when sufficient measurement time is allowed by DI approach.Here,rapid clarification of the chemical composition was attempted for A.capillaris using DIeMS/MSALL.A.capillaris extract was imported directly into the electrospray ionization interface to obtain the MS/MSALL measurement.After the MS1-MS2 dataset was well organized,we focused on structural characterization through retrieving information from the available databases and literature.Results:Twenty-six compounds were found,including 12 caffeoyl quinic acid derivatives,7 flavonoids,and 7 compounds belonging to other chemical families.Among them,24 ones were structurally identified.Compared with the LCeMS/MS technique,DIeMS/MSALL has the advantages of low-costing,solvent-saving,and time-saving.Conclusions:Chemical profiling of A.capillaris extract was accomplished within 5 min by DIeMS/MSALL,and this technique can be an alternative choice for chemical profile characterization of TCMs due to its extraordinary high-throughput advantage.展开更多
基金supported by the National Natural Science Foundation of China(22075133,62288102,22375091,21971114,and 21701086)the Jiangsu Provincial Funds(BX2022013)。
文摘Au is considered as one of the most promising catalysts for nitrogen reduction reaction(NRR),however maximizing the activity utilization rate of Au and understanding the synergistic effects between Au and carriers pose ongoing challenges.Herein,we systematically explore the synergistic catalytic effect of incorporating Au with boron clusters for accelerating NRR kinetics.An in-situ abinitio strategy is employed to construct B-doped Au nanoparticles(2-6 nm in diameter)loaded on BO_(x) substrates(AuBO_(x)),in which B not only modulates the surface electronic structure of Au but also forms strong coupling interactions to stabilize the nanoparticles.The electrochemical results show that Au-BO_(x) possesses excellent NRR activity(NH_(3) yield of 48.52μg h^(-1)mg_(cat)^(-1),Faraday efficiency of 56.18%),and exhibits high stability and reproducibility throughout the electrocatalytic NRR process.Theoretical calculations reveal that the introduction of B induces the formation of both Au dangling bond and Au-B coupling bond.which considerably facilitates the hydrogenation of~*N_(2)^(-)~*NH_(3).The present work provides a new avenue for the preparation of metal-boron materials achieved by one-step reduction and doping process,utilizing boron clusters as reducing and stabilizing agents.
基金supported financially by the Natural Science Foundation of Qinghai(2022-ZJ-928)the Special Project for Transformation of Scientific and Technological Achievements of Qinghai Province(2023-GX-102).
文摘The lamellar hydrates of CAC were designed with the introduction of nano CaCO_(3)or Mg-Al hydrotalcite(M-A-H),and the effects on the green strength,pore structures,and high-temperature fracture behavior of alumina-spinel castables were investigated.The results show that nano CaCO_(3)or M-A-H stimulates rapidly the hydration of CAC and the formation of lamellar C_(4)AcH_(11)or coexistence of C_(2)AH_(8)and C_(4)AcH_(11)at 25℃.The formation of lamellar hydrates can contribute to a more complicated pore structure,especially in the range of 400-2000 nm.Meanwhile,the incorporation of well-distributed CaO or MgO sources from nano CaCO_(3)or M-A-H also regulates the distribution of CA_(6)and spinel(pre-formed and in-situ).Consequently,the optimized microstructure and complicated pore structure can induce the deflection and bridging of cracks,thus facilitating the consumption of fracture energy and enhancing the resistance to thermal stress damage.
文摘Background Non-suicidal self-injury (NSSI) behaviour is very common among adolescents. Its prevalence and behavioural characteristics may vary according to regional and cultural differences. Investigation of NSSI locations and diagnosis of adolescents with NSSI are relatively lacking in China. Aims The study objective was to determine the prevalence and features of NSSI among middle school students in Shanghai. Methods The participants were from grade 6 to 8 selected from three junior schools in Jing’an District. Consenting students completed the Ottawa Self-Injury Inventory to determine the prevalence and characteristics of NSSI. Those who indicated NSSI within the past month were administered the Mini-International Neuropsychiatric Interview for Children and Adolescents to assess for emotional disorders. Result The result shows 510 participants (21.7%;mean age 13.51 (0.97) years old;56.7% female) reported at least one instance of NSSI during the previous 12 months. NSSI was significantly more common in girls than boys (24.9% vs 18.5%;χ^2=14.03, p=0.00). Commonly reported reasons for NSSI were for internal and external emotion regulation (87.9%, 82.3%) and social influence (57.8%). Anxiety disorders were the most common (28.9%) disorder associated with NSSI. Conclusion The rate of NSSI of middle school students in Shanghai inner bound is similar to those reported in North American and European youth. It is essential that school mental health professionals are aware of how to manage NSSI within the school setting.
基金supported by the National Natural Science Foundation of China(81600840,81771047 to J.X.)。
文摘Homoeostasis depends on the close connection and intimate molecular exchange between extracellular, intracellular and intercellular networks. Intercellular communication is largely mediated by gap junctions(GJs), a type of specialized membrane contact composed of variable number of channels that enable direct communication between cells by allowing small molecules to pass directly into the cytoplasm of neighbouring cells. Although considerable evidence indicates that gap junctions contribute to the functions of many organs, such as the bone, intestine, kidney, heart, brain and nerve, less is known about their role in oral development and disease. In this review, the current progress in understanding the background of connexins and the functions of gap junctions in oral development and diseases is discussed. The homoeostasis of tooth and periodontal tissues, normal tooth and maxillofacial development, saliva secretion and the integrity of the oral mucosa depend on the proper function of gap junctions.Knowledge of this pattern of cell–cell communication is required for a better understanding of oral diseases. With the everincreasing understanding of connexins in oral diseases, therapeutic strategies could be developed to target these membrane channels in various oral diseases and maxillofacial dysplasia.
文摘Gap junction(GJ)has been indicated to have an intimate correlation with adhesion junction.However,the direct interaction between them partially remains elusive.In the current study,we aimed to elucidate the role of N-cadherin,one of the core components in adhesion junction,in mediating connexin 43,one of the functional constituents in gap junction,via transforming growth factor-β1(TGF-β1)induction in osteoblasts.We first elucidated the expressions of N-cadherin induced by TGF-β1 and also confirmed the upregulation of Cx43,and the enhancement of functional gap junctional intercellular communication(GJIC)triggered by TGF-β1 in both primary osteoblasts and MC3T3 cell line.Colocalization analysis and Co-IP experimentation showed that N-cadherin interacts with Cx43 at the site of cell–cell contact.Knockdown of N-cadherin by siRNA interference decreased the Cx43 expression and abolished the promoting effect of TGF-β1 on Cx43.Functional GJICs in living primary osteoblasts and MC3T3 cell line were also reduced.TGF-β1-induced increase in N-cadherin and Cx43 was via Smad3 activation,whereas knockdown of Smad3 signaling by using siRNA decreased the expressions of both N-cadherin and Cx43.Overall,these data indicate the direct interactions between N-cadherin and Cx43,and reveal the intervention of adhesion junction in functional gap junction in living osteoblasts.
基金supported by the National Natural Science Foundation of China(Grant Nos.4157301241571130041 U1612441)
文摘Intensive soil tillage is a significant factor in soil organic matter decline in cultivated soils. Both cultivation abandonment and foregoing tillage have been encouraged in the past 30 years to reduce greenhouse gas emissions and soil erosion. However, the dynamic processes of soil organic carbon (SOC) in areas of either continuous cultivation or abandonment remain unclear and inconsistent.Our aims were to assess and model the dynamic processes of SOC under continuous tillage and after cultivation abandonment in the black soil of Northeast China. Soil profiles were collected of cultivated or abandoned land with cultivation history of 0–100 years. An isotope mass balance equation was used to calculate the proportion of SOC derived from corn debris (C_4) and from natural vegetation (C_3) to deduce the dynamic process. Approximately 40% of SOC in the natural surface soil (0–10 cm) was eroded in the first 5 years of cultivation, increasing to about 75% within 40 years, before a slow recovery. C_4 above 30 cm soil depth increased by 4.5%–5% or 0.11–0.12 g·kg^(-1) on average per year under continuous cultivation, while it decreased by approximately 0.34% annually in the surface soil after cultivation abandonment.The increase in the percentage of C_4 was fitted to a linear equation with given intercepts in the upper 30 cm of soil in cultivated land. A significant relationship between the change of C_4 and time was found only in the surface soil after abandonment of cultivation. These results demonstrate the loss and accumulation of corn-derived SOC in surface black soil of Northeast China under continuous tillage or cultivation abandonment.
基金supported by Ministry of Science and Technology of the People's Republic of China(Grant No.:2022YFC3502300)Beijing Natural Science Foundation(Grant No.:L222150)+2 种基金the National Natural Science Foundation of China(Grant No.:82072247)the second batch of“Ten thousand plan”National High Level Talents Special Support Plan(Grant No.:W02020052)Beijing University of Chinese Medicine(Grant Nos.:XJYS21005,JY21024,MSGZF-202001,2022-syjs-05,and 2022-syjs-10).
文摘The automation of traditional Chinese medicine(TCM)pharmaceuticals has driven the development of process analysis from offline to online.Most of common online process analytical technologies are based on spectroscopy,making the identification and quantification of specific ingredients still a challenge.Herein,we developed a quality control(QC)system for monitoring TCM pharmaceuticals based on paper spray ionization miniature mass spectrometry(mini-MS).It enabled real-time online qualitative and quantitative detection of target ingredients in herbal extracts using mini-MS without chromatographic separation for the first time.Dynamic changes of alkaloids in Aconiti Lateralis Radix Praeparata(Fuzi)during decoction were used as examples,and the scientific principle of Fuzi compatibility was also investigated.Finally,the system was verified to work stably at the hourly level for pilot-scale extraction.This mini-MS based online analytical system is expected to be further developed for QC applications in a wider range of pharmaceutical processes.
基金This work was sponsored by the National Natural Science Foundation of China(No.32002100,31772370,31972470).
文摘Chlorophylls and carotenoids are essential and bene fi cial substances for both plant and human health.Identifying the regulatory network of these pigments is necessary for improving fruit quality.In a previous study,we identi fi ed an R2R3-MYB transcription factor,SlMYB72,that plays an important role in chlorophyll and carotenoid metabolism in tomato fruit.Here,we demonstrated that the SlMYB72-interacting protein SlZHD17,which belongs to the zinc-fi nger homeodomain transcription factor family,also functions in chlorophyll and carotenoid metabolism.Silencing SIZHD 17 in tomato improved multiple bene fi cial agronomic traits,including dwar fi sm,accelerated fl owering,and earlier fruit harvest.More importantly,downregulating SIZHD17 in fruits resulted in larger chloroplasts and a higher chlorophyll content.Dual-luciferase,yeast one-hybrid and electrophoretic mobility shift assays clari fi ed that SlZHD17 regulates the chlorophyll biosynthesis gene SIPOR-B and chloroplast developmental regulator SITKN2 in a direct manner.Chlorophyll degradation and plastid transformation were also retarded after suppression of SIZHD17 in fruits,which was caused by the inhibition of SISGR1,a crucial factor in chlorophyll degradation.On the other hand,the expression of the carotenoid biosynthesis genes SIPSY1 and SIZISO was also suppressed and directly regulated by SlZHD17,which induced uneven pigmentation and decreased the lycopene content in fruits with SIZHD17 suppression at the ripe stage.Furthermore,the protein-protein interactions between SlZHD17 and other pigment regulators,including SlARF4,SlBEL11,and SlTAGL1,were also presented.This study provides new insight into the complex pigment regulatory network and provides new options for breeding strategies aiming to improve fruit quality.
基金the financial support from National Basic Research Program of China (973 program no. 2013CB934700)
文摘We have developed a Si/graphene oxide electrode synthesized via ultrasonication-stirring method under alkaline condition. Scanning electron microscopy(SEM), transmission electron microscope(TEM), EDS dot-mapping and high-resolution transmission electron microscopy(HRTEM) results show that Si particles are evenly dispersed on the graphene oxide sheets. The electrochemical performance was investigated by galvanostatic charge/discharge tests at room temperature. The results revealed that Si/graphene oxide electrode exhibited a high reversible capacity of 2825 mAh/g with a coulombic efficiency of 94.6%at 100 mA/g after 15 cycles and a capacity retention of 70.8% after 105 cycles at 4000 mA/g. These performance parameters show a great potential in the high-performance batteries application for portable electronics, electric vehicles and renewable energy storage.
基金the National Natural Science Foundation of China,Nos.32270516,31970413the Natural Science Foundation of Anhui Province,No.1908085MC83(to JL)a Start-up grant from Nanjing Agricultural University,No.804090。
文摘Cynops orientalis(C.orientalis)has a pronounced ability to regenerate its spinal cord after injury.Thus,exploring the molecular mechanism of this process could provide new approaches for promoting mammalian spinal cord regeneration.In this study,we established a model of spinal cord thoracic transection injury in C.orientalis,which is an endemic species in China.We performed RNA sequencing of the contused axolotl spinal cord at two early time points after spinal cord injury–during the very acute stage(4 days)and the subacute stage(7 days)–and identified differentially expressed genes;additionally,we performed Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses,at each time point.Transcriptome sequencing showed that 13,059 genes were differentially expressed during C.orientalis spinal cord regeneration compared with uninjured animals,among which 4273 were continuously downregulated and 1564 were continuously up-regulated.Down-regulated genes were most enriched in the Gene Ontology term“multicellular organismal process”and in the ribosome pathway at 10 days following spinal cord injury.We found that multiple genes associated with energy metabolism were down-regulated and multiple genes associated with the lysosome were up-regulated after spinal cord injury,indicating the importance of low metabolic activity during wound healing.Immune response-associated pathways were activated during the early acute phase(4 days),while the expression of extracellular matrix proteins such as glycosaminoglycan and collagen,as well as tight junction proteins,was lower at 10 days post-spinal cord injury than 4 days post-spinal cord injury.However,compared with 4 days post-injury,at 10 days post-injury neuroactive ligand-receptor interactions were no longer down-regulated,up-regulated differentially expressed genes were enriched in pathways associated with cancer and the cell cycle,and SHH,VIM,and Sox2 were prominently up-regulated.Immunofluorescence staining showed that glial fibrillary acidic protein was up-regulated in axolotl ependymoglial cells after injury,similar to what is observed in mammalian astrocytes after spinal cord injury,even though axolotls do not form a glial scar during regeneration.We suggest that low intracellular energy production could slow the rapid amplification of ependymoglial cells,thereby inhibiting reactive gliosis,at early stages after spinal cord injury.Extracellular matrix degradation slows cellular responses,represses the expression of neurogenic genes,and reactivates a transcriptional program similar to that of embryonic neuroepithelial cells.These ependymoglial cells act as neural stem cells:they migrate and proliferate to repair the lesion and then differentiate to replace lost glial cells and neurons.This provides the regenerative microenvironment that allows axon growth after injury.
基金Supported by the National Key Research and Development Program of China(No.2019YFD0901401)the National Natural Science Foundation of China(Nos.42176206,81900630)+2 种基金the Natural Science Foundation of Shandong Province(No.ZR2021MD071)the“One Hundred Talents”Project of Guangxi(No.6020303891251)the Outstanding Youth Project of Yunnan Provincial Department of Science and Technology(No.2019F1019)。
文摘Western Subarctic Gyre(WSG),which possesses distinctive differences in oceanographic and biogeochemical processes,is situated in the northwest subarctic Pacific.The WSG is characterized by high nutrient and low chlorophyll.We carried out a field investigation in this area in summer 2020 and performed microscopic observation,cytometric counting,and RuBisCO large subunit(rbc L)gene analysis to understand the community structure and spatial distribution of chromophytic phytoplankton better.Microscopic method revealed that total phytoplankton(>10μm,including Bacillariophyta,Dinoflagellata,Ochrophyta,and Chlorophyta)abundances ranged(0.6×10^(3))-(167.4×10^(3))cells/L with an increasing trend from south to north.Dinoflagellates and Pennatae diatoms dominated the phytoplankton assemblages in the southern and northern stations,respectively.Major chromophytic phytoplankton groups derived from rbc L genes included Haptophyta,Ochrophyta,Bacillariophyta,as well as rarely occurring groups,such as Xanthophyta,Cyanobacteria,Dinoflagellata,Rhodophyta,and Cryptophyta.At the phylum level,Haptophyta was the most abundant phylum,accounting for approximately 30.80%of the total obtained operational taxonomic units in all samples.Ochrophyta and Bacillariophyta were the second and third most abundant phylum,and their relative abundance was 20.26% and 19.60%,respectively.Further,redundancy analysis showed that high proportion of diatoms(e.g.,microscopic and rbc L methods)was positively correlated with nutrients(e.g.,dissolved inorganic nitrogen(DIN),dissolved inorganic phosphorous,and dissolved silicate(DSi))and negatively correlated with temperature and salinity.The proportion of Ochrophyta,Rhodophyta,and Cyanobateria identified by rbc L genes was positively correlated with salinity and temperature and showed negative correlation to nutrients.This work is the first molecular study of phytoplankton accomplished in the WSG,and our results show some discrepancies between morphological observation and rbc L gene sequences,which highlight the necessity of combining the microscopic and molecular methods to reveal the diversity of phytoplankton in marine environment.
基金Supported by the National Key Research and Development Program of China(No.2019YFD0901401)the Natural Science Foundation of Shandong Province(No.ZR202102280248)+1 种基金the National Natural Science Foundation of China(No.81900630)the Outstanding Youth Project of Yunnan Provincial Department of Science and Technology(No.2019F1019)。
文摘The Western Subarctic Gyre(WSG)is one of the two gyre-systems in the subarctic North Pacific known for high nutrient and low-chlorophyll waters.However,the bacterioplankton in marine water of this area,either in terms of the taxonomic composition or functional structure,remains relatively unexplored.A total of 22 sampling sites from two water layers(surface water,SW and 50-m layer water,FW)were collected in this area.The physiochemical parameters of waters,Synechococcus,and bacterial density,as well as the bacterioplankton community composition and distribution pattern,were analyzed.The nutrient concentrations of DIN,DIP,and DSi,Chl-a concentration,and the average abundance of heterobacteria in FW were higher than those in SW.However,temperature and the average abundance of Synechococcus and pico-eukaryotes were higher in SW.A total of 3269 OTUs were assigned,and 2123OTUs were commonly shared;moreover,similar alpha diversity patterns were observed in both SW and FW.The bacterioplankton community showed significantly obvious correlation with salinity,DIP,DIN,and Chl a in both SW and FW.Proteobacteria,Cyanobacteria,Bacteroidota,Actinobacteriota,and Firmicutes were the main phyla while Synechococcus_CC9902,Psychrobacter,and Sulfitobacter were the dominant genera in each sampling site.Most correlations that happened between the OTUs in the cooccurrence network were positive and inter-module.Higher edges and graph density were found in SW,indicating that more correlations occurred,and the community was more complex in SW.This study provided novel knowledge on the bacterioplankton community structure and the correlation characteristics in WSG.
基金Sponsored by the National Natural Science Foundation of China(Grant No.51504085)the Natural Science Foundation for Returness of Heilongjiang Province of China(Grant No.LC2017026).
文摘The original fault data of oil immersed transformer often contains a large number of unnecessary attributes,which greatly increases the elapsed time of the algorithm and reduces the classification accuracy,leading to the rise of the diagnosis error rate.Therefore,in order to obtain high quality oil immersed transformer fault attribute data sets,an improved imperialist competitive algorithm was proposed to optimize the rough set to discretize the original fault data set and the attribute reduction.The feasibility of the proposed algorithm was verified by experiments and compared with other intelligent algorithms.Results show that the algorithm was stable at the 27th iteration with a reduction rate of 56.25%and a reduction accuracy of 98%.By using BP neural network to classify the reduction results,the accuracy was 86.25%,and the overall effect was better than those of the original data and other algorithms.Hence,the proposed method is effective for fault attribute reduction of oil immersed transformer.
基金supported by the National Key R&D Program of China(Grant Nos.2022YFB3608000,2022YFE0134600)the National Natural Science Foundation of China(Grant Nos.U1632266,11927807,U2032207,52272152)performed with the approval of the Proposal Assessing Committee of SiP·ME2 platform project(Proposal No.11227902)。
文摘Fe_(3)GaTe_(2),a recently discovered van der Waals ferromagnetic crystal with the highest Curie temperature and strong perpendicular magnetic anisotropy among two-dimensional(2D)magnetic materials,has attracted significant attention and makes it a promising candidate for next-generation spintronic applications.Compared with Fe_(3)GeTe_(2),which has the similar crystal structure,the mechanism of the enhanced ferromagnetic properties in Fe_(3)GaTe_(2)is still unclear and needs to be investigated.Here,by using x-ray magnetic circular dichroism measurements,we find that both Ga and Te atoms contribute to the total magnetic moment of the system with antiferromagnetic coupling to Fe atoms.Our first-principles calculations reveal that Fe_(3)GaTe_(2)has van Hove singularities at the Fermi level in nonmagnetic state,resulting in the magnetic instability of the system and susceptibility to magnetic phase transitions.In addition,the calculation results about the density of states in ferromagnetic states of two materials suggest that the exchange interaction between Fe atoms is strengthened by replacing Ge atoms with Ga atoms.These findings indicate the increase of both the itinerate and local moments in Fe_(3)GaTe_(2)in view of Stoner and exchange interaction models,which results in the enhancement of the overall magnetism and a higher Curie temperature.Our work provides insight into the underlying mechanism of Fe_(3)GaTe_(2)’s remarkable magnetic properties and has important implications for searching 2D materials with expected magnetic properties in the future.
基金the National Natural Science Foundation of China(Grant Nos.U1632266,11927807,and U2032207)the National Key R&D Program of China(Grant No.2017YFA 0305400)supported by the US Department of Energy,Office of Basic Energy Sciences(Grant Nos.DOE-sc0012704)。
文摘Seeking new order parameters and the related broken symmetry and studying their relationship with phase transition have been important topics in condensed matter physics.Here,by using spin-and angle-resolved photoemission spectroscopy,we confirm the helical spin texture caused by spin-layer locking in the nodal region in the cuprate superconductor Bi_(2)Sr_(2)CaCu_(2)O_(8+δ)and discover the anisotropy of spin polarizations at nodes alongΓ–X andΓ–Y directions.The breaking of C_(4)rotational symmetry in electronic spin texture may give deeper insights into understanding the ground state of cuprate superconductors.
基金supported by National Natural Science Foundation of China(Nos.11805107 and 12275039)the Fundamental Research Funds in Heilongjiang Provincial Universities of China(No.135509124)the Graduate Innovation Foundation of Qiqihar University(No.YJSCX2022014)。
文摘This article presents simulation results on the effects of neutral gas flow for nanoparticle transport in atmospheric-pressure,radio-frequency,capacitively-coupled,and acetylene discharge.The acetylene gas is set to flow into the chamber from the upper showerhead electrode.The internal energy of the gas medium therein is transferred into kinetic energy so the gas advection can be triggered.This is represented by the pressure volume work term of the gas energy converse equation.The gas advection leads to the gas temperature sink at the gas inlet,hence a large gas temperature gradient is formed.The thermophoresis relies on the gas temperature gradient,and causes the profile of nanoparticle density to vary from a double-peak structure to a single-peak one.The gas advection influences the properties of electron density and temperature as well and causes the drift-ambipolar mode profile of electron density asymmetric.In the bulk region,i.e.away from the inlet,the gas advection is more like one isovolumetric compression,which slightly increases the temperature of the gas medium at consuming its kinetic energy.
基金Sponsored by the National Key R&D Project(Grant No.2019YFD1002500)the Key Projects of Science and Technology Support Plan of JiangsuP rovince(Grant No.BE2016341)the Open Fund of State Key Laboratory of Internal Combustion Engine(Grant No.GKF2015-004)。
文摘In order to analyze the spray characteristics of non-circular nozzle holes based on the air-assisted spray system, the spray characteristics of circular and non-circular nozzles were studied under the pressure of 0.2-0.6 MPa and the spray volume of 1000-5000 mL/h. Elliptical nozzle and triangular nozzle are classified as non-circular geometries. The spray cone angle was measured by processing the spray image captured by a CCD camera. The measured spray cone angles of the circular nozzles were analyzed, and the axis switching phenomenon of minor plane of elliptical nozzle was found during the test. Among the three shapes of nozzles, the elliptical nozzle had the largest spray cone angle, and the triangular nozzle had the smallest. The velocity field obtained depended on the PIV system. The results show that for axial velocity, elliptical orifice spray has greater kinetic energy and smaller droplet size under the same working parameters. Compared with the circular and elliptical nozzles, triangular orifice reached maximum spray velocity the fastest, but its velocity decay was the fastest. For radial velocity, away from the axis, the spray velocity of the elliptical orifice was less affected by the injection parameters, and the velocity was less than that of circular orifice and triangle orifice. Increasing air pressure will weaken radial propagation. The increase of liquid spraying rate had no remarkable effect on the increase of spraying rate. The results of particle size analysis show that the particle size of the non-circular orifice is reduced compared with that of the circular orifice, which promotes the breakup of droplets to a certain extent and enhances the atomization effect.
基金supported by National Natural Science Foundation of China(81973444 and 81773875)National Key Research and Development Plan(2018YFC1707300).
文摘Background:As one of the most popular traditional Chinese medicines(TCMs)for the treatment of various liver diseases,virgate wormwood herb(Artemisia capillaris Thunb.)has a long application history in TCM practices.It has been well established that the chemical composition is responsible for the pronounced therapeutic spectrum of A.capillaris.Although they are comprehensive,the time-intensive liquid chromatography coupled to tandem mass spectrometry(LCeMS/MS)assays cannot fully satisfy the analytical measurement workload from many test samples.Direct infusion-MS/MS(DIeMS/MS)may be the optimal choice to achieve high-throughput analysis if the mass spectrometer can universally record MS2 spectra.Methods:According to the application of gas phase ion fractionation concept,the MS/MSALL program enables to gain MS2 spectrum for each nominal m/z value with a data-independent acquisition algorithm via segmenting the entire MS1 ion cohort into sequential ion pieces with 1 Da width,when sufficient measurement time is allowed by DI approach.Here,rapid clarification of the chemical composition was attempted for A.capillaris using DIeMS/MSALL.A.capillaris extract was imported directly into the electrospray ionization interface to obtain the MS/MSALL measurement.After the MS1-MS2 dataset was well organized,we focused on structural characterization through retrieving information from the available databases and literature.Results:Twenty-six compounds were found,including 12 caffeoyl quinic acid derivatives,7 flavonoids,and 7 compounds belonging to other chemical families.Among them,24 ones were structurally identified.Compared with the LCeMS/MS technique,DIeMS/MSALL has the advantages of low-costing,solvent-saving,and time-saving.Conclusions:Chemical profiling of A.capillaris extract was accomplished within 5 min by DIeMS/MSALL,and this technique can be an alternative choice for chemical profile characterization of TCMs due to its extraordinary high-throughput advantage.