Synergic catalytic effect between active sites and supports greatly determines the catalytic activity for the aerobic oxidative desulfurization of fuel oils.In this work,Ni-doped Co-based bimetallic metal-organic fram...Synergic catalytic effect between active sites and supports greatly determines the catalytic activity for the aerobic oxidative desulfurization of fuel oils.In this work,Ni-doped Co-based bimetallic metal-organic framework(CoNi-MOF)is fabricated to disperse N-hydroxyphthalimide(NHPI),in which the whole catalyst provides plentiful synergic catalytic effect to improve the performance of oxidative desulfurization(ODS).As a bimetallic MOF,the second metal Ni doping results in the flower-like morphology and the modification of electronic properties,which ensure the exposure of NHPI and strengthen the synergistic effect of the overall catalyst.Compared with the monometallic Co-MOF and naked NHPI,the NHPI@CoNi-MOF triggers the efficient activation of molecular oxygen and improves the ODS performance without an initiator.The sulfur removal of dibenzothiophene-based model oil reaches 96.4%over the NHPI@CoNi-MOF catalyst in 8 h of reaction.Furthermore,the catalytic product of this aerobic ODS reaction is sulfone,which is adsorbed on the catalyst surface due to the difference in polarity.This work provides new insight and strategy for the design of a strong synergic catalytic effect between NHPI and bimetallic supports toward high-activity aerobic ODS materials.展开更多
Porous ionic liquids have demonstrated excellent performance in the field of separation,attributed to their high specific surface area and efficient mass transfer.Herein,task-specific protic porous ionic liquids(PPILs...Porous ionic liquids have demonstrated excellent performance in the field of separation,attributed to their high specific surface area and efficient mass transfer.Herein,task-specific protic porous ionic liquids(PPILs)were prepared by employing a novel one-step coupling neutralization reaction strategy for extractive desulfurization.The single-extraction efficiency of PPILs reached 75.0%for dibenzothiophene.Moreover,adding aromatic hydrocarbon interferents resulted in a slight decrease in the extraction efficiency of PPILs(from 45.2%to 37.3%,37.9%,and 33.5%),indicating the excellent extraction selectivity of PPILs.The experimental measurements and density functional theory calculations reveal that the surface channels of porous structures can selectively capture dibenzothiophene by the stronger electrophilicity(Eint(HS surface channel/DBT)=-39.8 kcal mol^(-1)),and the multiple extraction sites of ion pairs can effectively enrich and transport dibenzothiophene from the oil phase into PPILs throughπ...π,C-H...πand hydrogen bonds interactions.Furthermore,this straightforward synthetic strategy can be employed in preparing porous liquids,offering new possibilities for synthesizing PPILs with tailored functionalities.展开更多
High-sulfur petroleum coke(HSPC),that is a by-product from slag oil in the coking process of refning,shows versatility values in practical applications and,however,concentrates the majority of organic sulfur.Herein,we...High-sulfur petroleum coke(HSPC),that is a by-product from slag oil in the coking process of refning,shows versatility values in practical applications and,however,concentrates the majority of organic sulfur.Herein,we design and construct a highly efective CTAB@HPA composites to be explored for the catalytic oxidative desulfurization of HSPC under mild conditions using hydrogen peroxide as the oxidant and 1-butyl-3-methylimidazole tetrafuoroborate ionic liquid as the extractant.The results demonstrate that the sulfur content of HSPC could be strikingly reduced from 4.46 wt%to 2.48 wt%under 60℃ and atmospheric pressure,and that the organic sulfur in HSPC is mainly oxidized to sulfoxide,sulfone and sulfate,which latter can be directly separated from petroleum coke.Moreover,the efect of reaction conditions on the desulfurization performance of HSPC as well as the catalytic oxidation reaction kinetic of HSPC desulfurization was systematically investigated.Furthermore,a mechanism for the oxidative desulfurization of HSPC over CTAB@HPA catalysts was proposed.Therefore,this work provides new insight into how to construct active catalysts for the desulfurization of HSPC under mild conditions.展开更多
Herein,we designed and constructed a mesoporous LaAlOx via a solvent evaporation induced self-assembly protocol.The structure and physicochemical property of the corresponding NiMo supported catalyst was analyzed by a...Herein,we designed and constructed a mesoporous LaAlOx via a solvent evaporation induced self-assembly protocol.The structure and physicochemical property of the corresponding NiMo supported catalyst was analyzed by a set of characterizations,and its catalytic activity was investigated for hydrodesulfurization(HDS)of 4,6-dimethyldibenzothiophene.It has confirmed that the incorporation of La profoundly facilitate the generation of“Type II”NiMoS phase by weakening the interaction of Mo–O–Al leakage and promoting the sulfidation of both Ni and Mo oxides as well as changing the morphology of Ni promoted MoS2 slabs,thereafter boosting the HDS performance substantially.The finding here may contribute to the fundamental understanding of structure-activity in ultra-deep desulfurization and inspire the advancement of highly-efficient HDS catalyst in future.展开更多
A metal-free N-hydroxyphthalimide/hexagonal boron nitride(NHPI/h-BN)catalytic system was developed for deep oxidative desulfurization(ODS)of fuel oils.Detailed experiments find that the heterogenization process of loa...A metal-free N-hydroxyphthalimide/hexagonal boron nitride(NHPI/h-BN)catalytic system was developed for deep oxidative desulfurization(ODS)of fuel oils.Detailed experiments find that the heterogenization process of loading NHPI on h-BN not only benefits to the dispersion and utilization of NHPI,but also can significantly promote the catalytic performance.By employing NHPI/h-BN as the catalyst,azodiisobutyronitrile(AIBN)as the metal-free initiator,a 95%conversion of dibenzothiophene(DBT)can be acquired under the reaction conditions of 120°C and atmospheric pressure with molecular oxygen(O_(2))as oxidant.Moreover,the heterogenization is convenient for the regeneration of the catalyst with>94%DBT conversion after being recycled seven times.Characterizations illustrate that the promoted catalytic activity along with the regenerability originate from the interactions between NHPI and h-BN.The catalytic mechanism study shows that molecular oxygen is readily activated by the NHPI/h-BN to form a superoxide radical(O_(2)^(·-)),which oxidize DBT to DBTO2 for desulfurization.展开更多
It is usually difficult to remove dibenzothiophenes from diesel fuels by oxidation with molecular oxygen as an oxidant.In the study,tungsten oxide was supported on magnetic mesoporous silica by calcination to form a m...It is usually difficult to remove dibenzothiophenes from diesel fuels by oxidation with molecular oxygen as an oxidant.In the study,tungsten oxide was supported on magnetic mesoporous silica by calcination to form a magnetically separable catalyst for oxidative desulfurization of diesel fuel.By tuning different calcining temperatures,the catalyst calcined at 500℃showed a high catalytic activity with molecular oxygen as the oxidant.Under optimal reaction conditions,the sulfur removal of DBT reached 99.9%at 120℃after 8 h.Furthermore,the removals of 4-methyldibenzothiophene and 4,6-dimethyldibenzothiophene could also get up to 98.2%and 92.3%under the same conditions.The reaction mechanism was explored by selective quenching experiments and FT-IR spectra.展开更多
A series of three-dimensional ordered macroporous(3 DOM)W-TiO_(2)catalysts have been prepared through a facile colloidal crystal template method.The prepared materials characterized in detail exhibited enhanced cataly...A series of three-dimensional ordered macroporous(3 DOM)W-TiO_(2)catalysts have been prepared through a facile colloidal crystal template method.The prepared materials characterized in detail exhibited enhanced catalytic activity in aerobic oxidative desulfurization process.The experimental results indicated that the as-prepared materials possessed excellent 3 DOM structure,which is beneficial for the catalytic activity.The sample 3 DOM W-TiO_(2)-20 exhibited the highest activity in ODS process,and the sulfur removal can reach 98%in 6 h.Furthermore,the oxidative product was also analyzed in the reaction process.展开更多
A series of basic nitrogen doped carbon hollow spheres(p-N-C) catalysts derived from waste tires were prepared by a green, facile and environmental “leavening” strategy for the catalytic oxidation of pentanethiol. C...A series of basic nitrogen doped carbon hollow spheres(p-N-C) catalysts derived from waste tires were prepared by a green, facile and environmental “leavening” strategy for the catalytic oxidation of pentanethiol. Compared to pristine carbon, the p-N-C has a higher surface curvature conducive to the enrichment of substrates, leading to an excellent catalytic performance. This increased surface curvature of p-N-C was fabricated on the synergistic effect of two foaming agents((NH4)2 C2 O4 and NaHCO3), and the released gas also endows the spherical shell of p-N-C with a hierarchical porous structure, promoting the accessibility of active sites with pentanethiol. Pyridine-like and pyrrolic-like nitrogen atoms were investigated as reactive sites on the p-N-C to accelerate the electron transfer from sulfur to active surface oxygen and enhance the adsorption/oxidation process. As a result, the optimal p-N-C catalyst exhibits superior adsorption and oxidation performance(99.9%) of pentanethiol, outperforming the “unleavened”catalyst(20.8%). This work offers a new avenue for the fabrication of highly efficient materials for the desulfurization of fuel.展开更多
The development of high-efficient adsorbents for the treatment of antibiotics from contaminated water has been of great concern.This work introduced an alcohol-solvent mediated strategy to increase the specific surfac...The development of high-efficient adsorbents for the treatment of antibiotics from contaminated water has been of great concern.This work introduced an alcohol-solvent mediated strategy to increase the specific surface area(SSA)and porosity of hexagonal boron nitride nanosheets(BNNSs)for improving tetracycline(TC)removal efficiency.The BNNSs synthesized with the mediation of n-propanol solvent(BN-P)exhibited the largest pore volume and relatively high SSA(increased by 34%and 64%,respectively,compared with that synthesized under the mediation of water)in its structure,which in turn facilitated the mass transfer of TC molecules onto BN-P framework.The remarkable adsorption performance of BN-P,with 20%increase in equilibrium adsorption capacity and Langmuir maximum adsorption capacity of 556 mg·g^(-1),was achieved for capturing TC within just 3 h,which is mainly through p-p interaction and electrostatic force.Pseudo-second kinetics equation can well illustrate the adsorption process,while Freundlich and Langmuir isotherm models fitted the equilibrium data well.Thermodynamics study demonstrated a spontaneous exothermal adsorption process.Furthermore,the strong environmental suitability and notable recycling performance of BN-P revealed its good application prospect in removing antibiotic TC from wastewater.展开更多
基金This work was financially supported by the National Natural Science Foundation of China(Nos.21978119,22202088)Key Research and Development Plan of Hainan Province(ZDYF2022SHFZ285)Jiangsu Funding Program for Excellent Postdoctoral Talent(2022ZB636)。
文摘Synergic catalytic effect between active sites and supports greatly determines the catalytic activity for the aerobic oxidative desulfurization of fuel oils.In this work,Ni-doped Co-based bimetallic metal-organic framework(CoNi-MOF)is fabricated to disperse N-hydroxyphthalimide(NHPI),in which the whole catalyst provides plentiful synergic catalytic effect to improve the performance of oxidative desulfurization(ODS).As a bimetallic MOF,the second metal Ni doping results in the flower-like morphology and the modification of electronic properties,which ensure the exposure of NHPI and strengthen the synergistic effect of the overall catalyst.Compared with the monometallic Co-MOF and naked NHPI,the NHPI@CoNi-MOF triggers the efficient activation of molecular oxygen and improves the ODS performance without an initiator.The sulfur removal of dibenzothiophene-based model oil reaches 96.4%over the NHPI@CoNi-MOF catalyst in 8 h of reaction.Furthermore,the catalytic product of this aerobic ODS reaction is sulfone,which is adsorbed on the catalyst surface due to the difference in polarity.This work provides new insight and strategy for the design of a strong synergic catalytic effect between NHPI and bimetallic supports toward high-activity aerobic ODS materials.
基金financially supported by the National Natural Science Foundation of China (Nos.22078135,21808092,21978119,22202088)。
文摘Porous ionic liquids have demonstrated excellent performance in the field of separation,attributed to their high specific surface area and efficient mass transfer.Herein,task-specific protic porous ionic liquids(PPILs)were prepared by employing a novel one-step coupling neutralization reaction strategy for extractive desulfurization.The single-extraction efficiency of PPILs reached 75.0%for dibenzothiophene.Moreover,adding aromatic hydrocarbon interferents resulted in a slight decrease in the extraction efficiency of PPILs(from 45.2%to 37.3%,37.9%,and 33.5%),indicating the excellent extraction selectivity of PPILs.The experimental measurements and density functional theory calculations reveal that the surface channels of porous structures can selectively capture dibenzothiophene by the stronger electrophilicity(Eint(HS surface channel/DBT)=-39.8 kcal mol^(-1)),and the multiple extraction sites of ion pairs can effectively enrich and transport dibenzothiophene from the oil phase into PPILs throughπ...π,C-H...πand hydrogen bonds interactions.Furthermore,this straightforward synthetic strategy can be employed in preparing porous liquids,offering new possibilities for synthesizing PPILs with tailored functionalities.
基金This work was financially supported by the National Natural Science Foundation of China(No.21722604)the Postdoctoral Foundation of China(Nos.2019M651743 and 2020M671365)+1 种基金the Natural Science Foundation of Jiangsu Province(No.BK20190852)the National Youth Natural Science Foundation(No.8111310009).
文摘High-sulfur petroleum coke(HSPC),that is a by-product from slag oil in the coking process of refning,shows versatility values in practical applications and,however,concentrates the majority of organic sulfur.Herein,we design and construct a highly efective CTAB@HPA composites to be explored for the catalytic oxidative desulfurization of HSPC under mild conditions using hydrogen peroxide as the oxidant and 1-butyl-3-methylimidazole tetrafuoroborate ionic liquid as the extractant.The results demonstrate that the sulfur content of HSPC could be strikingly reduced from 4.46 wt%to 2.48 wt%under 60℃ and atmospheric pressure,and that the organic sulfur in HSPC is mainly oxidized to sulfoxide,sulfone and sulfate,which latter can be directly separated from petroleum coke.Moreover,the efect of reaction conditions on the desulfurization performance of HSPC as well as the catalytic oxidation reaction kinetic of HSPC desulfurization was systematically investigated.Furthermore,a mechanism for the oxidative desulfurization of HSPC over CTAB@HPA catalysts was proposed.Therefore,this work provides new insight into how to construct active catalysts for the desulfurization of HSPC under mild conditions.
基金financial support of the National Natural Science Foundation of China(22002050,22178154)the Project of Jiangsu University Senior Talents Foundation(20JDG35)+1 种基金Postdoctoral Science Foundation of China(2022T150765,2020M683154)National Engineering Laboratory for Mobile Source Emission Control Technology(NELMS2020B01).
文摘Herein,we designed and constructed a mesoporous LaAlOx via a solvent evaporation induced self-assembly protocol.The structure and physicochemical property of the corresponding NiMo supported catalyst was analyzed by a set of characterizations,and its catalytic activity was investigated for hydrodesulfurization(HDS)of 4,6-dimethyldibenzothiophene.It has confirmed that the incorporation of La profoundly facilitate the generation of“Type II”NiMoS phase by weakening the interaction of Mo–O–Al leakage and promoting the sulfidation of both Ni and Mo oxides as well as changing the morphology of Ni promoted MoS2 slabs,thereafter boosting the HDS performance substantially.The finding here may contribute to the fundamental understanding of structure-activity in ultra-deep desulfurization and inspire the advancement of highly-efficient HDS catalyst in future.
基金the financial support from the National Key R&D Program of China(No.2017YFB0306504)National Natural Science Foundation of China(No.22008094,22178154 and 21878133)+2 种基金Chinese Postdoctoral Science Foundation(No.2019M651743,2020M671364 and 2020M673039)Natural Science Foundation of Jiangsu Province(No.BK20190852)Natural Science Foundation for Jiangsu Colleges and Universities(No.19KJB530005)
文摘A metal-free N-hydroxyphthalimide/hexagonal boron nitride(NHPI/h-BN)catalytic system was developed for deep oxidative desulfurization(ODS)of fuel oils.Detailed experiments find that the heterogenization process of loading NHPI on h-BN not only benefits to the dispersion and utilization of NHPI,but also can significantly promote the catalytic performance.By employing NHPI/h-BN as the catalyst,azodiisobutyronitrile(AIBN)as the metal-free initiator,a 95%conversion of dibenzothiophene(DBT)can be acquired under the reaction conditions of 120°C and atmospheric pressure with molecular oxygen(O_(2))as oxidant.Moreover,the heterogenization is convenient for the regeneration of the catalyst with>94%DBT conversion after being recycled seven times.Characterizations illustrate that the promoted catalytic activity along with the regenerability originate from the interactions between NHPI and h-BN.The catalytic mechanism study shows that molecular oxygen is readily activated by the NHPI/h-BN to form a superoxide radical(O_(2)^(·-)),which oxidize DBT to DBTO2 for desulfurization.
基金financially supported by the National Natural Science Foundation of China(Nos.21978119,21576122,and 21766007)a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutionsthe support of the Jiangsu Government Scholarship for oversea studies。
文摘It is usually difficult to remove dibenzothiophenes from diesel fuels by oxidation with molecular oxygen as an oxidant.In the study,tungsten oxide was supported on magnetic mesoporous silica by calcination to form a magnetically separable catalyst for oxidative desulfurization of diesel fuel.By tuning different calcining temperatures,the catalyst calcined at 500℃showed a high catalytic activity with molecular oxygen as the oxidant.Under optimal reaction conditions,the sulfur removal of DBT reached 99.9%at 120℃after 8 h.Furthermore,the removals of 4-methyldibenzothiophene and 4,6-dimethyldibenzothiophene could also get up to 98.2%and 92.3%under the same conditions.The reaction mechanism was explored by selective quenching experiments and FT-IR spectra.
基金the financial support from the National Natural Science Foundation of China(Nos.21722604 and 21776116)China Postdoctoral Science Foundation(2020M671365)+2 种基金Jiangsu Postdoctoral Research Funding Program(No.2021K343C)Natural Science Foundation of Jiangsu Province(No.BK20190243)the Society Development Fund of Zhenjiang City(SH2020020)。
文摘A series of three-dimensional ordered macroporous(3 DOM)W-TiO_(2)catalysts have been prepared through a facile colloidal crystal template method.The prepared materials characterized in detail exhibited enhanced catalytic activity in aerobic oxidative desulfurization process.The experimental results indicated that the as-prepared materials possessed excellent 3 DOM structure,which is beneficial for the catalytic activity.The sample 3 DOM W-TiO_(2)-20 exhibited the highest activity in ODS process,and the sulfur removal can reach 98%in 6 h.Furthermore,the oxidative product was also analyzed in the reaction process.
基金financially supported by the National Natural Science Foundation of China (Nos. 21722604, 21878133, and22002050)China Postdoctoral Science Foundation (No.2020M671365)Postgraduate Research&Practice Innovation Program of Jiangsu Province (No. KYCX20_3039)。
文摘A series of basic nitrogen doped carbon hollow spheres(p-N-C) catalysts derived from waste tires were prepared by a green, facile and environmental “leavening” strategy for the catalytic oxidation of pentanethiol. Compared to pristine carbon, the p-N-C has a higher surface curvature conducive to the enrichment of substrates, leading to an excellent catalytic performance. This increased surface curvature of p-N-C was fabricated on the synergistic effect of two foaming agents((NH4)2 C2 O4 and NaHCO3), and the released gas also endows the spherical shell of p-N-C with a hierarchical porous structure, promoting the accessibility of active sites with pentanethiol. Pyridine-like and pyrrolic-like nitrogen atoms were investigated as reactive sites on the p-N-C to accelerate the electron transfer from sulfur to active surface oxygen and enhance the adsorption/oxidation process. As a result, the optimal p-N-C catalyst exhibits superior adsorption and oxidation performance(99.9%) of pentanethiol, outperforming the “unleavened”catalyst(20.8%). This work offers a new avenue for the fabrication of highly efficient materials for the desulfurization of fuel.
基金This work was financially supported by Hainan Natural Science Foundation Innovation Research Team project(No.220CXTD436)the National Natural Science Foundation of China(No.21766007,21878133).
文摘The development of high-efficient adsorbents for the treatment of antibiotics from contaminated water has been of great concern.This work introduced an alcohol-solvent mediated strategy to increase the specific surface area(SSA)and porosity of hexagonal boron nitride nanosheets(BNNSs)for improving tetracycline(TC)removal efficiency.The BNNSs synthesized with the mediation of n-propanol solvent(BN-P)exhibited the largest pore volume and relatively high SSA(increased by 34%and 64%,respectively,compared with that synthesized under the mediation of water)in its structure,which in turn facilitated the mass transfer of TC molecules onto BN-P framework.The remarkable adsorption performance of BN-P,with 20%increase in equilibrium adsorption capacity and Langmuir maximum adsorption capacity of 556 mg·g^(-1),was achieved for capturing TC within just 3 h,which is mainly through p-p interaction and electrostatic force.Pseudo-second kinetics equation can well illustrate the adsorption process,while Freundlich and Langmuir isotherm models fitted the equilibrium data well.Thermodynamics study demonstrated a spontaneous exothermal adsorption process.Furthermore,the strong environmental suitability and notable recycling performance of BN-P revealed its good application prospect in removing antibiotic TC from wastewater.